| Rank | Feature Gene | Score |
|---|---|---|
| 1 | CD48 | 0.988028 |
| 2 | NUDC | 0.945298 |
| 3 | PREP | 0.896984 |
| 4 | ZNF8 | 0.788328 |
| 5 | MIOX | 0.755394 |
| 6 | GUCA1A | 0.684091 |
| 7 | STIL | 0.65675 |
| 8 | LIMK2 | 0.610448 |
| 9 | CSGALNACT2 | 0.608094 |
| 10 | PTK7 | 0.607124 |
| 11 | PDHB | 0.542081 |
| 12 | OIT3 | 0.498698 |
| 13 | TTC18 | 0.44092 |
| 14 | CACNB2 | 0.432395 |
| 15 | CAMK2G | 0.414445 |
| 16 | ZNF37A | 0.408389 |
| 17 | GPR111 | 0.399203 |
| 18 | TACR2 | 0.38036 |
| 19 | ZCCHC24 | 0.379044 |
| 20 | TEX15 | 0.366941 |
| 21 | ORAI3 | 0.354901 |
| 22 | CASP4 | 0.354816 |
| 23 | TMEM179B | 0.350247 |
| 24 | FUCA2 | 0.347965 |
| 25 | HSF4 | 0.329035 |
| 26 | BDKRB2 | 0.325158 |
| 27 | NEBL | 0.32076 |
| 28 | MAPK1IP1L | 0.313791 |
| 29 | SLC6A19 | 0.312604 |
| 30 | OAF | 0.304509 |
| 31 | BMP1 | 0.301919 |
| 32 | SEC23A | 0.292971 |
| 33 | SHOX2 | 0.279698 |
| 34 | RAB18 | 0.279225 |
| 35 | PRSS1 | 0.269889 |
| 36 | FAM107B | 0.266554 |
| 37 | NXT1 | 0.2586 |
| 38 | SERPINB2 | 0.25645 |
| 39 | PSMG2 | 0.254268 |
| 40 | LTBP1 | 0.253511 |
| 41 | CALU | 0.249929 |
| 42 | BCL7C | 0.232767 |
| 43 | CACNA2D1 | 0.230291 |
| 44 | UBE2C | 0.226592 |
| 45 | MKX | 0.223067 |
| 46 | ZNHIT2 | 0.215278 |
| 47 | HOXC6 | 0.203885 |
| 48 | OSCAR | 0.198196 |
| 49 | FLOT2 | 0.196987 |
| 50 | SPRR4 | 0.191842 |
| 51 | ZC3H18 | 0.189741 |
| 52 | SH3RF2 | 0.174025 |
| 53 | KRT16 | 0.172293 |
| 54 | SAMHD1 | 0.169295 |
| 55 | ANKRD2 | 0.167077 |
| 56 | PCGF5 | 0.156329 |
| 57 | MRPL32 | 0.153739 |
| 58 | IFNA8 | 0.152801 |
| 59 | HDAC4 | 0.152784 |
| 60 | AOAH | 0.151977 |
| 61 | ATAD1 | 0.149119 |
| 62 | WBSCR16 | 0.147947 |
| 63 | KHDRBS3 | 0.146733 |
| 64 | HIPK1 | 0.143926 |
| 65 | POLR2J2 | 0.1432 |
| 66 | PI3 | 0.141864 |
| 67 | OLAH | 0.141049 |
| 68 | COL5A2 | 0.137172 |
| 69 | KLK1 | 0.136191 |
| 70 | MT1X | 0.136169 |
| 71 | C1orf228 | 0.134885 |
| 72 | SLCO2B1 | 0.134172 |
| 73 | CADM1 | 0.133658 |
| 74 | NAALAD2 | 0.132779 |
| 75 | PPIA | 0.130905 |
| 76 | APOBEC3C | 0.129229 |
| 77 | ZNF398 | 0.125729 |
| 78 | FAM49A | 0.122637 |
| 79 | BAZ1B | 0.119736 |
| 80 | TUBGCP6 | 0.119302 |
| 81 | TLCD1 | 0.119034 |
| 82 | TOMM22 | 0.114795 |
| 83 | RNF138 | 0.108155 |
| 84 | OPALIN | 0.10803 |
| 85 | GNAZ | 0.1066 |
| 86 | LBX1 | 0.103419 |
| 87 | IKZF5 | 0.100589 |
| 88 | HERPUD1 | 0.0974698 |
| 89 | CNPY4 | 0.096888 |
| 90 | CD36 | 0.0946224 |
| 91 | NECAB3 | 0.0946066 |
| 92 | MRPL37 | 0.0870411 |
| 93 | C9 | 0.0819983 |
| 94 | PUM1 | 0.0551607 |
| 95 | ABCC3 | 0.0550801 |
| 96 | SSU72 | 0.0545075 |
| 97 | POLR2J | 0.0486099 |
| 98 | NPPB | 0.0453884 |
| 99 | DDX49 | 0.0439599 |
| 100 | EPB41L1 | 0.0439061 |
| 101 | RAB42 | 0.0356713 |
| 102 | SPRED3 | 0.0348833 |
| 103 | TMEM106A | 0.0246111 |
| 104 | RAC1 | 0.020582 |
| 105 | EIF1 | 0.0190138 |
| 106 | ABCB1 | 0.0173974 |
start time: 2021-12-17 22:26:11 input parameters: Input dataset 1: glioma_CNV.txt Input dataset 2: glioma_methylation.txt Sample label: label.txt sample number: 569 feature number: 500 data type number: 2 randomForest algorithm........ parameters: classification parameter: class(K) = 3 the feature number: 500 end time: 2021-12-17 22:27:31 results: The result of feature importance is in the file: feature_importance.txt The raw dataset(s) ordered by important features is in the file: glioma_CNV_orderByImportance.txt glioma_methylation_orderByImportance.txt