Rank | Feature Gene | Score |
---|---|---|
1 | CD48 | 0.988028 |
2 | NUDC | 0.945298 |
3 | PREP | 0.896984 |
4 | ZNF8 | 0.788328 |
5 | MIOX | 0.755394 |
6 | GUCA1A | 0.684091 |
7 | STIL | 0.65675 |
8 | LIMK2 | 0.610448 |
9 | CSGALNACT2 | 0.608094 |
10 | PTK7 | 0.607124 |
11 | PDHB | 0.542081 |
12 | OIT3 | 0.498698 |
13 | TTC18 | 0.44092 |
14 | CACNB2 | 0.432395 |
15 | CAMK2G | 0.414445 |
16 | ZNF37A | 0.408389 |
17 | GPR111 | 0.399203 |
18 | TACR2 | 0.38036 |
19 | ZCCHC24 | 0.379044 |
20 | TEX15 | 0.366941 |
21 | ORAI3 | 0.354901 |
22 | CASP4 | 0.354816 |
23 | TMEM179B | 0.350247 |
24 | FUCA2 | 0.347965 |
25 | HSF4 | 0.329035 |
26 | BDKRB2 | 0.325158 |
27 | NEBL | 0.32076 |
28 | MAPK1IP1L | 0.313791 |
29 | SLC6A19 | 0.312604 |
30 | OAF | 0.304509 |
31 | BMP1 | 0.301919 |
32 | SEC23A | 0.292971 |
33 | SHOX2 | 0.279698 |
34 | RAB18 | 0.279225 |
35 | PRSS1 | 0.269889 |
36 | FAM107B | 0.266554 |
37 | NXT1 | 0.2586 |
38 | SERPINB2 | 0.25645 |
39 | PSMG2 | 0.254268 |
40 | LTBP1 | 0.253511 |
41 | CALU | 0.249929 |
42 | BCL7C | 0.232767 |
43 | CACNA2D1 | 0.230291 |
44 | UBE2C | 0.226592 |
45 | MKX | 0.223067 |
46 | ZNHIT2 | 0.215278 |
47 | HOXC6 | 0.203885 |
48 | OSCAR | 0.198196 |
49 | FLOT2 | 0.196987 |
50 | SPRR4 | 0.191842 |
51 | ZC3H18 | 0.189741 |
52 | SH3RF2 | 0.174025 |
53 | KRT16 | 0.172293 |
54 | SAMHD1 | 0.169295 |
55 | ANKRD2 | 0.167077 |
56 | PCGF5 | 0.156329 |
57 | MRPL32 | 0.153739 |
58 | IFNA8 | 0.152801 |
59 | HDAC4 | 0.152784 |
60 | AOAH | 0.151977 |
61 | ATAD1 | 0.149119 |
62 | WBSCR16 | 0.147947 |
63 | KHDRBS3 | 0.146733 |
64 | HIPK1 | 0.143926 |
65 | POLR2J2 | 0.1432 |
66 | PI3 | 0.141864 |
67 | OLAH | 0.141049 |
68 | COL5A2 | 0.137172 |
69 | KLK1 | 0.136191 |
70 | MT1X | 0.136169 |
71 | C1orf228 | 0.134885 |
72 | SLCO2B1 | 0.134172 |
73 | CADM1 | 0.133658 |
74 | NAALAD2 | 0.132779 |
75 | PPIA | 0.130905 |
76 | APOBEC3C | 0.129229 |
77 | ZNF398 | 0.125729 |
78 | FAM49A | 0.122637 |
79 | BAZ1B | 0.119736 |
80 | TUBGCP6 | 0.119302 |
81 | TLCD1 | 0.119034 |
82 | TOMM22 | 0.114795 |
83 | RNF138 | 0.108155 |
84 | OPALIN | 0.10803 |
85 | GNAZ | 0.1066 |
86 | LBX1 | 0.103419 |
87 | IKZF5 | 0.100589 |
88 | HERPUD1 | 0.0974698 |
89 | CNPY4 | 0.096888 |
90 | CD36 | 0.0946224 |
91 | NECAB3 | 0.0946066 |
92 | MRPL37 | 0.0870411 |
93 | C9 | 0.0819983 |
94 | PUM1 | 0.0551607 |
95 | ABCC3 | 0.0550801 |
96 | SSU72 | 0.0545075 |
97 | POLR2J | 0.0486099 |
98 | NPPB | 0.0453884 |
99 | DDX49 | 0.0439599 |
100 | EPB41L1 | 0.0439061 |
101 | RAB42 | 0.0356713 |
102 | SPRED3 | 0.0348833 |
103 | TMEM106A | 0.0246111 |
104 | RAC1 | 0.020582 |
105 | EIF1 | 0.0190138 |
106 | ABCB1 | 0.0173974 |
start time: 2021-12-17 22:26:11 input parameters: Input dataset 1: glioma_CNV.txt Input dataset 2: glioma_methylation.txt Sample label: label.txt sample number: 569 feature number: 500 data type number: 2 randomForest algorithm........ parameters: classification parameter: class(K) = 3 the feature number: 500 end time: 2021-12-17 22:27:31 results: The result of feature importance is in the file: feature_importance.txt The raw dataset(s) ordered by important features is in the file: glioma_CNV_orderByImportance.txt glioma_methylation_orderByImportance.txt