Summary: Abstract Background. The cellular effects of androgen are transduced through the androgen receptor, which controls the expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding androgen receptor function, and it also has important translational implications. Methods. We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer progression influences the expression of DNA repair genes. We performed whole genome sequencing to help characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA repair enzyme inhibitor for effects on androgen-dependent transcription. Results. Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin inhibits androgen-dependent transcription and growth of prostate cancer cells. Conclusions. Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer.
Overall Design: RNA was extracted from PC3-AR, VCaP, and LNCaP cells under untreated and androgen (2 nM, R1881) treated conditions. A total of 21 samples were sequenced with 3 replicates for each condition.
Strategy: |
|
Species: |
|
Tissue: |
|
Healthy Condition: |
|
Cell Type: |
|
Cell Line: |
|
Growth Protocol: | cell were seeded onto a 96-well format for 1 day. Media was exchanged and supplemented with indicated concentrations of inhibitors for 72 h. Alamar blue dye (Promega, #G808A) was added (10% of total volume) for ~ 6 h and measured with a fluorescent plate reader according to manufacturer’s recommendations. |
Treatment Protocol: | -; cell were plated in phenol-free medium supplemented with charcoal-stripped FBS serum for 48-72 hours prior to treatment. cell were treated for the indicated timepoint with 2 nM R1881. |
Extract Protocol: | RNA was extracted using the Qiagen RNeasy kit according to the manufacturer’s instructions. |
Library Construction Protocol: | Indexed libraries were made by Hudson Alpha using the standard polyA method. |
Molecule Type: | poly(A)+ RNA |
Library Source: | |
Library Layout: | PAIRED |
Library Strand: | - |
Platform: | ILLUMINA |
Instrument Model: | Illumina HiSeq 2500 |
Strand-Specific: | Unspecific |
Data Resource | GEN Sample ID | GEN Dataset ID | Project ID | BioProject ID | Sample ID | Sample Name | BioSample ID | Sample Accession | Experiment Accession | Release Date | Submission Date | Update Date | Species | Race | Ethnicity | Age | Age Unit | Gender | Source Name | Tissue | Cell Type | Cell Subtype | Cell Line | Disease | Disease State | Development Stage | Mutation | Phenotype | Case Detail | Control Detail | Growth Protocol | Treatment Protocol | Extract Protocol | Library Construction Protocol | Molecule Type | Library Layout | Strand-Specific | Library Strand | Spike-In | Strategy | Platform | Instrument Model | Cell Number | Reads Number | Gbases | AvgSpotLen1 | AvgSpotLen2 | Uniq Mapping Rate | Multiple Mapping Rate | Coverage Rate |
---|