Difference between revisions of "Lnc-CDKN1A-1:1"
Chunlei Yu (talk | contribs) |
Chunlei Yu (talk | contribs) |
||
Line 8: | Line 8: | ||
===Characteristics=== | ===Characteristics=== | ||
− | + | The PANDAR was located approximately 5 kilobases upstream of the CDKN1A transcription start site and was induced upon DNA damage. <ref name="ref1" /> | |
− | |||
Sequence runs antisense through a processed LAP3 pseudogene and contains a SINE. | Sequence runs antisense through a processed LAP3 pseudogene and contains a SINE. | ||
===Function=== | ===Function=== | ||
− | + | [[File:''PANDA'' regulates transcription factor NF-YA.jpgright|thumb|400px|'''''PANDA'' regulates transcription factor NF-YA.'''<ref name="ref1" />]] | |
+ | ''PANDA'' interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin.<ref name="ref1" /> | ||
+ | [[File:''PANDA'' regulates transcription factor NF-YA.jpgright|thumb|400px|'''''PANDA'' regulates transcription factor NF-YA.'''<ref name="ref1" />]] | ||
+ | DNA damage activates p53-mediated transcription at ''CDKN1A'' and ''PANDA'' that functions synergistically to mediate cell cycle arrest and survival.<ref name="ref1" /> | ||
− | + | ''PANDAR'' could function as a tumor-promoting gene in breast cancer by regulating G1/S transition. <ref name="ref2" /> | |
+ | ===Expression=== | ||
+ | [[File:''PANDAR'' was dysregulated in breast cancer.jpgright|thumb|400px|'''''PANDAR'' was dysregulated in breast cancer.'''<ref name="ref1" />]] | ||
− | + | ''PANDA'' interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin.<ref name="ref1" /> | |
+ | One of five lncRNAs surrounding the transcription start site of the cell cycle gene CDKN1A that, along with the CDKN1A protein coding gene, were induced in human fetal lung fibroblasts upon DNA damage by doxorubicin.<ref name="ref1" /> | ||
− | + | Expression of ''PANDA'' and ''CDKN1A'' were positively regulated by p53.<ref name="ref1" /> | |
− | === | + | Expression of neither ''CDKN1A'' itself nor TP53 was affected by ''PANDA'' depletion, suggesting that PANDA is a P53 effector that acts independently of p21-CDKN1A.<ref name="ref1" /> |
− | + | ||
+ | ''PANDAR'' is up-regulated in breast cancer clinical samples as well as cell lines.<ref name="ref2" /> | ||
+ | |||
+ | ''PANDAR'' enhanced the binding of Bim1 complex to p16INK4A promoter and suppressed p16INK4A expression.<ref name="ref2" /> | ||
+ | |||
+ | {|class='wikitable' style="text-align:center" | ||
+ | |- | ||
+ | ! | Primers | ||
+ | ! | Fwd | ||
+ | ! | Rev | ||
+ | |- | ||
+ | | | Primers used in RACE | ||
+ | | | 5'-CAGAACTTGGCATGATGGAG-3' | ||
+ | 5'-TGCACACATTTAACCCGAAG-3'<ref name="ref1" /> | ||
+ | | | 5'-TGATATGAAACTCGGTTTACTACTAGC-3' | ||
+ | 5'-CCCCAAAGCTACATCTATGACA-3' | ||
− | + | 5'-CGTCTCCATCAT GCCAAGTT-3' | |
− | + | 5'-CATAGAGCTTCACCGACATAGC-3'<ref name="ref1" /> | |
+ | |- | ||
+ | | rowspan="1"|RT-PCR primers for PANDAR | ||
+ | | | 5'-TGCACACATTTAACCCGAAG-3' | ||
+ | | | 5'-CCCCAAAGCTACATCTATGACA-3'<ref name="ref1" /><ref name="ref2" /> | ||
+ | |- | ||
+ | | rowspan="3"|siRNAs for PANDAR | ||
+ | | | 5'-AAUGUGUGCACGUAACAGAUU-3' | ||
+ | | | 5'-GAGAUUUGCAGCAGACACAUU-3'<ref name="ref1" /> | ||
+ | |- | ||
+ | | | 5'-GGGCAUGUUUUCACAGAGGUU-3' | ||
+ | | | 5'-GAGAUUUGCAGCAGACACAUU-3'<ref name="ref1" /> | ||
+ | |- | ||
+ | | | 5'-AAUGUGUGCACGUAACAGAUU-3' | ||
+ | | | 5'-GGGCAUGUUUUCACAGAGGUU-3'<ref name="ref1" /> | ||
+ | |- | ||
+ | | rowspan="1"|ChIP assay | ||
+ | | | 5'-CCCATTTTCCTATCTGC-3' | ||
+ | | | 5'-CTAGTTCAAAGGATTCC-3'<ref name="ref2" /> | ||
+ | |} | ||
− | === | + | ===Disease=== |
− | + | * breast cancer <ref name="ref2" /> | |
===Misc=== | ===Misc=== | ||
Line 40: | Line 79: | ||
===Regulation=== | ===Regulation=== | ||
− | + | During DNA damage, PANDAR is induced by p53. <ref name="ref1" /> | |
===Allelic Information and Variation=== | ===Allelic Information and Variation=== | ||
Line 48: | Line 87: | ||
Please input evolution information here. | Please input evolution information here. | ||
− | |||
==Labs working on this lncRNA== | ==Labs working on this lncRNA== | ||
− | + | * Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.<ref name="ref1" /> | |
+ | * Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, the Third Affiliated Hospital, Nanchang University, Nanchang, P.R. China.<ref name="ref2" /> | ||
==References== | ==References== | ||
− | [ | + | <references> |
+ | <ref name="ref1">Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters[J]. Nature genetics. 2011,43(7):621-9.</ref>(1) | ||
+ | <ref name="ref2">Sang Y, Tang J, Li S, Li L, Tang X, Cheng C, et al. LncRNA PANDAR regulates the G1/S transition of breast cancer cells by suppressing p16(INK4A) expression[J]. Scientific reports. 2016,6:22366.</ref>(2) | ||
+ | </references> | ||
{{basic| | {{basic| |
Revision as of 02:52, 1 July 2016
Please input one-sentence summary here.
Contents
Annotated Information
Name
PANDAR:promoter of CDKN1A antisense DNA damage activated RNA
PANDA
Characteristics
The PANDAR was located approximately 5 kilobases upstream of the CDKN1A transcription start site and was induced upon DNA damage. [1]
Sequence runs antisense through a processed LAP3 pseudogene and contains a SINE.
Function
PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin.[1]
DNA damage activates p53-mediated transcription at CDKN1A and PANDA that functions synergistically to mediate cell cycle arrest and survival.[1]
PANDAR could function as a tumor-promoting gene in breast cancer by regulating G1/S transition. [2]
Expression
PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin.[1] One of five lncRNAs surrounding the transcription start site of the cell cycle gene CDKN1A that, along with the CDKN1A protein coding gene, were induced in human fetal lung fibroblasts upon DNA damage by doxorubicin.[1]
Expression of PANDA and CDKN1A were positively regulated by p53.[1]
Expression of neither CDKN1A itself nor TP53 was affected by PANDA depletion, suggesting that PANDA is a P53 effector that acts independently of p21-CDKN1A.[1]
PANDAR is up-regulated in breast cancer clinical samples as well as cell lines.[2]
PANDAR enhanced the binding of Bim1 complex to p16INK4A promoter and suppressed p16INK4A expression.[2]
Primers | Fwd | Rev |
---|---|---|
Primers used in RACE | 5'-CAGAACTTGGCATGATGGAG-3'
5'-TGCACACATTTAACCCGAAG-3'[1] |
5'-TGATATGAAACTCGGTTTACTACTAGC-3'
5'-CCCCAAAGCTACATCTATGACA-3' 5'-CGTCTCCATCAT GCCAAGTT-3' 5'-CATAGAGCTTCACCGACATAGC-3'[1] |
RT-PCR primers for PANDAR | 5'-TGCACACATTTAACCCGAAG-3' | 5'-CCCCAAAGCTACATCTATGACA-3'[1][2] |
siRNAs for PANDAR | 5'-AAUGUGUGCACGUAACAGAUU-3' | 5'-GAGAUUUGCAGCAGACACAUU-3'[1] |
5'-GGGCAUGUUUUCACAGAGGUU-3' | 5'-GAGAUUUGCAGCAGACACAUU-3'[1] | |
5'-AAUGUGUGCACGUAACAGAUU-3' | 5'-GGGCAUGUUUUCACAGAGGUU-3'[1] | |
ChIP assay | 5'-CCCATTTTCCTATCTGC-3' | 5'-CTAGTTCAAAGGATTCC-3'[2] |
Disease
- breast cancer [2]
Misc
Please input misc information here.
Transcriptomic Nomeclature
Please input transcriptomic nomeclature information here.
Regulation
During DNA damage, PANDAR is induced by p53. [1]
Allelic Information and Variation
Please input allelic information and variation information here.
Evolution
Please input evolution information here.
Labs working on this lncRNA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.[1]
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, the Third Affiliated Hospital, Nanchang University, Nanchang, P.R. China.[2]
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters[J]. Nature genetics. 2011,43(7):621-9.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Sang Y, Tang J, Li S, Li L, Tang X, Cheng C, et al. LncRNA PANDAR regulates the G1/S transition of breast cancer cells by suppressing p16(INK4A) expression[J]. Scientific reports. 2016,6:22366.
Basic Information
Transcript ID |
lnc-CDKN1A-1:1 |
Source |
LNCipedia2.1 |
Same with |
, |
Classification |
intergenic |
Length |
1506 nt |
Genomic location |
chr6+:36641397..36642903 |
Exon number |
, |
Exons |
, |
Genome context |
|
Sequence |
000001 ACGAATTCTT TCAGGAATGC CGCAGATGTA CATGCTCCCG CAGATCTATA TTTTCCAATG TTGTTAACAT CAGCCAGCTG 000080 000081 GCAATCTACA ACCTGTCTTG TACAATGTTT GAAGAGAGGC ATCCTCCAGA CACGGTCCCC TGTTTCAATG CTGGCCTCGA 000160 000161 AGAGCTTGTT CCAGAGCCAG GATGAATTGG TAAAGACCCC AGTGGCACCT GACCCCAAAG CTACATCTAT GACACCTGTT 000240 000241 AAGGTGGTGG CATTGAGGAT GACCTTCGGG TTAAATGTGT GCACGTAACA GAGCGCATCA GCCAGTATGA GCCTCCCCTC 000320 000321 AGCATCAGTG TTACCAACCT GGATGGTCTT CCTGTTCCTG GCTCTAACAA CATCCCCCAG CTTGTTGGCC TTGCCGCTGG 000400 000401 GCATGTTTTC ACAGAGGGGC CAGACCTATA ATATTAATGG GCAAACTGAG ATTTGCAGCA GACACAATGG CTGAGCATAT 000480 000481 AGTTGTAGCT CCTCCCATGT CGGCCCTCAT GAGGTCCATA TTTGCAGAAG CCTTGATGGA GATACCACCA CTGTCAAAGG 000560 000561 TAATTCCTTT CCCAACAAAC AAGGGGTGGT TTGTCTGCAT TGGGGCTGCC TATGTAGTGA ATTTCCAAGA AGACTGAGGG 000640 000641 CTCGTCAGAT CCTTTGGCCA CACTGAGGAA TGATCCCATT GCCTGTTCCT CAATCCAAGA CCTGGGTCTG ATATGAAACT 000720 000721 CGGTTTACTA CTAGCGCTTT TGAGATTCTT CTCAATAATT TCGGCAAATC TGGTTGGCAT CATCTCGCTG GCTGGCGTCT 000800 000801 CCATCATGCC AAGTTCTGCC CAGAAGCAAA CAGGACTCCT TTCTGCCAGG CCTCCTGATC CCCAGTTCCA TAGAGCTTCA 000880 000881 CCGACATAGC CATCTTCTTT TTTTGCTTTA GGTCATCGTA TTCATAGAGA CCAAGCACCG CGCCCTCCTC AGCAGCCTGA 000960 000961 GCATCTCTAC AGGGATCCAC CTCCACGGAA GAGAGCTCCA GGTCTTGAAT CTGCCTGCAT CCTGCTGCAA CAGCAGCTCT 001040 001041 GATGTTTTCT TTGCCTTCCT GCCAGTTTTC CTGTTCGTCG ATTCTGGCTG CCTTTTTGCC GAGGCCAACT AGCACCACGC 001120 001121 TGGGGAAGTC CTGATGCAGA CCATAAAAGT TTCGAGTCTT GCCTGCCT |