Difference between revisions of "ENST00000534336.1"

From LncRNAWiki
Jump to: navigation, search
(Expression)
 
(99 intermediate revisions by 11 users not shown)
Line 1: Line 1:
Please input one-sentence summary here.
+
MALAT-1 is overexpressed in many kinds of cancers and is closely associated with tumor growth and metastasis.
  
 
==Annotated Information==
 
==Annotated Information==
===Transcriptomic Nomeclature===
+
===Transcriptomic Nomenclature===
hsa-N11QT0652001-SSCY-LMXXX01
+
N11QT0096001-SSCY-LMXXX01 [[Help:Contents#Database content|'''''Help''''']]
  
 
===Name===
 
===Name===
Line 9: Line 9:
  
 
Neat2: Nuclear enriched abundant transcript 2
 
Neat2: Nuclear enriched abundant transcript 2
 +
 +
LncBook ID: [https://bigd.big.ac.cn/lncbook/transcript?transid=HSALNT0289363 HSALNT0289363]
  
 
===Characteristics===
 
===Characteristics===
Malat1 gene is localized in the intergenic region of the genome. It is about 8kb in length and the transcript has only one exon (1,2). The 3’-end of the transcript is a conserved tRNA-like sequence, which can be modified by RNase P and cleaved by RNase Z to yield another ncRNA, the cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA) (3).
+
[[File:malat1-structure.gif|right|frame| RNAfold image [http://www.lncipedia.org/db/transcript/lnc-SCYL1-1:2 ''LNCipedia link'']]]
 
 
Malat1 is stable in human B cells (half-life: 16.5 h) (4) and Hela cells (half-life: about 7 h) (5), but is unstable in mouse 3T3 cells (half-life: 3 h) (4) and N2A cells ( half-life: 4 h) (4). MALAT-1 is generally stable in cancer cells, with the half-life ranging from ~ 9 h to > 12 h in various cancer cells (6). Xrn2, PM/Scl-75, PARN, and Mtr4, known nuclear RNases or RNA helicases, do not affect MALAT-1 degradation (6).
 
  
===Cellular localization===
+
Protein coding potential[[http://www.lncipedia.org/info#cpc|'''''LNCipedia Help''''']]:
MALAT-1 localize predominately in the nucleus . In G2/M cell cycle phase, MALAT-1 transcripts partially translocate from the nucleus into the cytoplasm (4). RNPS1, SRm160, and IBP160 are found to contribute to the nuclear localization of MALAT-1 (5).
+
*CPC coding potential score: 0.280589 (coding)
 +
*HMMER Pfam domains in 3' to 5' reading frames: 0
 +
*HMMER Pfam domains in 5' to 3' reading frames: 0
  
===Function===
+
Malat1 gene is localized in the intergenic region of the genome. It is about 8kb in length and the transcript has only one exon <ref name="ref1" /><ref name="ref2" />. The 3’-end of the transcript is a conserved tRNA-like sequence, which can be modified by RNase P and cleaved by RNase Z to yield another ncRNA (61nt), the cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA) <ref name="ref3" />.
[[File:Malat1_splicing.jpg|right|thumb|300px|'''''Figure 1. Hypothetical model depicting the role of MALAT1 in AS (alternative splicing) regulation.''' (Ea) In normal cells, MALAT1, by associating with SR proteins in nuclear speckles and in the nucleoplasm, regulates their recruitment to the pre-mRNA, thereby regulating AS. Here we have shown SAT1 pre-mRNA as an example that undergoes alternate exon exclusion in normal cells. However, in MALAT1-depleted cells (Eb), cellular levels of SR proteins are increased and are also present predominantly in the dephosphorylated form, resulting in changes in AS of pre-mRNA. In case of SAT1 pre-mRNA, MALAT1 depletion results in the inclusion of an alternative exon containing weak splice sites. (from reference <ref name="ref3" />).'']]
 
  
MALAT-1 could modulate mRNA alternative splicing via its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins that are involved in the splicing machinery (6). It is found that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance (10). However, splicing alterations were not found after Malat1 ablation in mice (7). Also, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes in lung cancer cells (8). These results indicate that alternative functions for MALAT-1 may exist.
+
Malat1 is stable in human B cells (half-life: 16.5 h) <ref name="ref4" /> and Hela cells (half-life: about 7 h) <ref name="ref5" />, but is unstable in mouse 3T3 cells (half-life: 3 h) <ref name="ref4" /> and N2A cells ( half-life: 4 h) <ref name="ref4" />. MALAT-1 is generally stable in cancer cells, with the half-life ranging from ~ 9 h to > 12 h in various cancer cells <ref name="ref6" />. Xrn2, PM/Scl-75, PARN, and Mtr4, known nuclear RNases or RNA helicases, do not affect MALAT-1 degradation <ref name="ref6" />.
  
MALAT-1 can function by participating in localization of important proteins, such as hnRNP C (7) and growth control genes (13). MALAT-1 is found to regulate cell cycle progress in G2/M phase (4,6), G1/S phase (9), and G0/G1 phase (10). In the G2/M phase, MALAT-1 interacts with hnRNP C to facilitate the cytoplasmic translocation of hnRNP C, leading to cell cycle progresion (7). MALAT1 could interact with the demethylated form of CBX4 (chromobox homolog 4), and controls the relocalization of growth control genes between polycomb bodies and interchromatin granules (13). MALAT1 could bind to Human PSF protein to release hPSF from a repressed proto-oncogene and activate transcription, driving transformation and tumorigenesis (16).
+
===Cellular Localization===
 +
MALAT-1 localizes predominately in the nucleus <ref name="ref2" />. In G2/M cell cycle phase, MALAT-1 transcripts partially translocate from the nucleus into the cytoplasm <ref name="ref7" />. RNPS1, SRm160, and IBP160 are found to contribute to the nuclear localization of MALAT-1 <ref name="ref8" />.
  
MALAT-1 regulates synaptogenesis (10)and is involved in the development of advanced invasive placentation (17). Deregulation of MALAT-1 is found to be closely associated with the development of cancer. In vitro, it is found that MALAT-1 promotes epithelial–mesenchymal transition (EMT) of bladder cancer cells by activating Wnt signaling (12). 3' end of MALAT-1 (6918 nt-8441 nt) is found to be important in colorectal cancer metastasis (19). In lung adenocarcinoma cells, MALAT-1 may regulate cell motility through transcriptional and post-transcriptional regulation of motility related gene expression (20). However, mechanisms of these regulations are not clear.
+
===Function===
 +
[[File:Malat1_splicing.jpg|right|thumb|200px|'''Hypothetical model depicting the role of MALAT1 in AS (alternative splicing) regulation in normal cells (Ea) and MALAT1-depleted cells (Eb)''' <ref name="ref9" />.]]
  
===Regulation===
+
MALAT-1 localizes specifically in the SC35 splicing domains in the nucleus, suggesting its function in pre-mRNA metabolism or specific nuclear structures <ref name="ref2" />. The later studies found that MALAT-1 could modulate mRNA alternative splicing via its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins that are involved in the splicing machinery <ref name="ref9" />. MALAT-1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance <ref name="ref10" />. These results indicate that alternative functions for MALAT-1 may exist. However, splicing alterations were not found after Malat1 ablation in mice <ref name="ref11" />. Also, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes in lung cancer cells <ref name="ref12" />.  
In breast cancer cells, high concentration E2 treatment largely decreases MALAT-1 RNA level in an ERa independent way (25).
 
  
Disruption of p53 appears to play an important role in the up-regulation of MALAT-1 (26).
+
MALAT-1 can function by participating in localization of important proteins, such as hnRNP C <ref name="ref7" /> and growth control genes <ref name="ref13" />. MALAT-1 is found to regulate cell cycle progress in G2/M phase <ref name="ref7" /><ref name="ref9" />, G1/S phase <ref name="ref14" />, and G0/G1 phase <ref name="ref15" />. In the G2/M phase, MALAT-1 interacts with hnRNP C to facilitate the cytoplasmic translocation of hnRNP C, leading to cell cycle progresion <ref name="ref7" />. MALAT1 could interact with the demethylated form of CBX4 (chromobox homolog 4), and controls the relocalization of growth control genes between polycomb bodies and interchromatin granules <ref name="ref13" />. MALAT1 could bind to Human PSF (hPSF) protein to release hPSF from a repressed proto-oncogene and activate transcription, driving transformation and tumorigenesis <ref name="ref16" />.
  
CREB is found to bind to the defined proximal promoter of the MALAT1 gene, leading to the up-regulation of MALAT1 (27).
+
MALAT-1 regulates synaptogenesis <ref name="ref10" />and is involved in the development of advanced invasive placentation <ref name="ref17" />. Deregulation of MALAT-1 is found to be closely associated with the development of cancer. In vitro, it is found that MALAT-1 promotes epithelial–mesenchymal transition (EMT) of bladder cancer cells by activating Wnt signaling <ref name="ref18" />. 3' end of MALAT-1 (6918 nt-8441 nt) is found to be important in colorectal cancer metastasis <ref name="ref19" />. In lung adenocarcinoma cells, MALAT-1 may regulate cell motility through transcriptional and post-transcriptional regulation of motility related gene expression <ref name="ref20" />. However, mechanisms of these functions are not clear.
  
===Diseases===
+
===Expression===
MALAT-1 was first identified as a prognostic marker for metastasis and patient survival in non-small cell lung cancer (NSCLC) (18). It is found to be overexpressed in various human tumors, including NSCLC (1), hepatocellular carcinomas (19), breast cancer (20), prostate cancer (10), melanoma (14), bladder cancer (12). Overexpression of MALAT-1 in cancer cells is closely associated with tumor growth and metastasis (8,14,18,21).  
+
MALAT-1 is ubiquity expressed in various normal tissues <ref name="ref1" /><ref name="ref2" /><ref name="ref3" /><ref name="ref10" />, but the expression levels are quite different among tissues <ref name="ref1" /><ref name="ref2" /><ref name="ref10" />.
 +
 +
MALAT-1 is over-expressed in many human carcinomas, including those of the breast, pancreas, lung, colon, prostate, and liver <ref name="ref30" />.  
  
There is no significant difference in MALAT-1 lncRNA levels in normal pituitary tissues, invasive NFPAs (non-functioning pituitary adenomas), and non-invasive NFPAs, and no significant association between MALAT-1 expression and patient clinicopathological characteristics. (15).
+
It is also found to be up-regulated in the cerebellum, hippocampus and brain stem of human alcoholics <ref name="ref21" />.
 
 
===Expression===
 
MALAT-1 is highly and ubiquity expressed in various tissue (10), including both cancer tissues and normal tissues, such as brain (10).
 
It is found to be up-regulated in the cerebellum, hippocampus and brain stem of human alcoholics (21).
 
 
{| class='wikitable' style="text-align:center"
 
{| class='wikitable' style="text-align:center"
 
|-
 
|-
Line 50: Line 50:
 
| rowspan="4"|RT-PCR
 
| rowspan="4"|RT-PCR
 
| | 5'-AAAGCAAGGTCTCCCCACAAG-3'
 
| | 5'-AAAGCAAGGTCTCCCCACAAG-3'
| | 5'-GGTCTGTGCTAGATCAAAAGGCA-3' ( <ref name="ref 22" /><ref name="ref 23" />)
+
| | 5'-GGTCTGTGCTAGATCAAAAGGCA-3'<ref name="ref22" /><ref name="ref23" />
 
|-
 
|-
 
| | 5'-CTTCCCTAGGGGATTTCAGG-3'
 
| | 5'-CTTCCCTAGGGGATTTCAGG-3'
| | 5'-GCCCACAGGAACAAGTCCTA-3' ( <ref name="ref 15" />)
+
| | 5'-GCCCACAGGAACAAGTCCTA-3'<ref name="ref15" />
 
|-
 
|-
 
| | 5'-GAATTGCGTCATTTAAAGCCTAGTT-3'
 
| | 5'-GAATTGCGTCATTTAAAGCCTAGTT-3'
| | 5'-GTTTCATCCTACCACTCCCAATTAAT-3' ( <ref name="ref 24" />)
+
| | 5'-GTTTCATCCTACCACTCCCAATTAAT-3'<ref name="ref24" />
 
|-
 
|-
 
| | 5'-cggaagtaattcaagatcaagag-3'
 
| | 5'-cggaagtaattcaagatcaagag-3'
| | 5'-actgaatccacttctgtgtagc-3' ( <ref name="ref 16" />)
+
| | 5'-actgaatccacttctgtgtagc-3'<ref name="ref16" />
 
|-
 
|-
 
| rowspan="1"|cDNA amplication
 
| rowspan="1"|cDNA amplication
 
| | 5'-GTAGGGCCCTCCATGGCGATTTGCCTTGTGAGCAC-3'
 
| | 5'-GTAGGGCCCTCCATGGCGATTTGCCTTGTGAGCAC-3'
| | 5'-GAGCTCGAGGTCCTGAAGACAGATTAGTAGTCAAAGC-3' <ref name="ref 6" />
+
| | 5'-GAGCTCGAGGTCCTGAAGACAGATTAGTAGTCAAAGC-3'<ref name="ref6" />
 +
|-
 +
| rowspan="1"|Northern blot
 +
| | 5'-GGCAGGAGAGACAACAAAGC-3'
 +
| | 5'-CTCGACACCATCGTTACCT-3'<ref name="ref2" />
 
|}
 
|}
  
===Allelic Information and Variation===
+
===Regulation===
Please input allelic information and variation information here.
+
In breast cancer cells, high concentration E2 treatment largely decreases MALAT-1 RNA level in an ERa independent way <ref name="ref25" />.
 +
 
 +
Disruption of p53 appears to play an important role in the up-regulation of MALAT-1 <ref name="ref26" />.
 +
 
 +
CREB (cyclic AMP-responsive element binding) transcription factor is found to bind to the defined proximal promoter of the MALAT1 gene, leading to the up-regulation of MALAT1 <ref name="ref27" />.
 +
 
 +
===Diseases===
 +
MALAT-1 was first identified as a prognostic marker for metastasis and patient survival in non-small cell lung cancer (NSCLC) <ref name="ref28" />. It is found to be overexpressed in various tumors and cancer cell lines, including lung cancer <ref name="ref1" /><ref name="ref30" /><ref name="ref28" />, endometrial stromal sarcoma of the uterus <ref name="ref29" />, hepatocellular carcinomas <ref name="ref30" /><ref name="ref31" />, breast cancer <ref name="ref30" /><ref name="ref32" />, pancreas cancer <ref name="ref30" />, colon cancer <ref name="ref30" />, prostate cancer <ref name="ref15" /><ref name="ref30" />, melanoma <ref name="ref22" />, bladder cancer <ref name="ref18" />. Overexpression of MALAT-1 in cancer cells is closely associated with tumor growth and metastasis <ref name="ref12" /><ref name="ref20" /><ref name="ref22" /><ref name="ref28" />.
 +
 
 +
There is no significant difference in MALAT-1 lncRNA levels in normal pituitary tissues, invasive NFPAs (non-functioning pituitary adenomas), and non-invasive NFPAs, and no significant association between MALAT-1 expression and patient clinicopathological characteristics <ref name="ref23" />.
  
 
===Evolution===
 
===Evolution===
MALAT-1 is highly conserved over its full length (~8 kb) across mammals (13).
+
MALAT-1 is highly conserved across mammals <ref name="ref10" />. However, sequence conservation is limited in vertebrates. Sequence similarity between zebrafish and mammalian MALAT1 is restricted to the 3′ end, while the length of MALAT1 (~7 kb) along with the gene structure appeare to be roughly fixed in all vertebrates <ref name="ref14" />.
  
 
===Associated components===
 
===Associated components===
MALAT-1 is an 8-knt-long macromolecule that can form a complex structure to recruit many different protein factors for functionality. MALAT-1 is found to interact with hnRNP C and facilitate its cytoplasmic translocation in the G2/M phase, thereby regulating the progress of the cell cycle (4).
+
*hnRNP C <ref name="ref7" />
 +
 
 +
*CBX4 (chromobox homolog 4) <ref name="ref13" />
  
You can also add sub-section(s) at will.
+
*Human PSF (hPSF) protein <ref name="ref16" />
  
 
==Labs working on this lncRNA==
 
==Labs working on this lncRNA==
Please input related labs here.
+
*Department of Medicine, University of Münster, Germany
 +
 
 +
*Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
 +
 
 +
*Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
 +
 
 +
*Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
  
 
==References==
 
==References==
Please input cited references here.
+
[http://www.lncrnadb.org/Malat1/ Annotation originally sourced from lncRNAdb.]
 +
 
 +
<references>
 +
<ref name="ref1">Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H., Bulk, E. et al. (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-8041.</ref>
 +
<ref name="ref2">Hutchinson, J.N., Ensminger, A.W., Clemson, C.M., Lynch, C.R., Lawrence, J.B. and Chess, A. (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.</ref>
 +
<ref name="ref3">Wilusz, J.E., Freier, S.M. and Spector, D.L. (2008) 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell, 135, 919-932.</ref>
 +
<ref name="ref4">Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E. and Mattick, J.S. (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res, 22, 885-898.</ref>
 +
<ref name="ref5">Tani, H., Mizutani, R., Salam, K.A., Tano, K., Ijiri, K., Wakamatsu, A., Isogai, T., Suzuki, Y. and Akimitsu, N. (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res, 22, 947-956.</ref>
 +
<ref name="ref6">Tani, H., Nakamura, Y., Ijiri, K. and Akimitsu, N. (2010) Stability of MALAT-1, a nuclear long non-coding RNA in mammalian cells, varies in various cancer cells. Drug Discov Ther, 4, 235-239.</ref>
 +
<ref name="ref7">Yang, F., Yi, F., Han, X., Du, Q. and Liang, Z. (2013) MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett, 587, 3175-3181.</ref>
 +
<ref name="ref8">Miyagawa, R., Tano, K., Mizuno, R., Nakamura, Y., Ijiri, K., Rakwal, R., Shibato, J., Masuo, Y., Mayeda, A., Hirose, T. et al. (2012) Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA, 18, 738-751.</ref>
 +
<ref name="ref9">Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S.M., Bennett, C.F., Sharma, A., Bubulya, P.A. et al. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 39, 925-938.</ref>
 +
<ref name="ref10">Bernard, D., Prasanth, K.V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z., Zhang, M.Q., Sedel, F., Jourdren, L., Coulpier, F. et al. (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J, 29, 3082-3093.</ref>
 +
<ref name="ref11">Zhang, B., Arun, G., Mao, Y.S., Lazar, Z., Hung, G., Bhattacharjee, G., Xiao, X., Booth, C.J., Wu, J., Zhang, C. et al. (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep, 2, 111-123.</ref>
 +
<ref name="ref12">Gutschner, T., Hammerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., Revenko, A., Arun, G., Stentrup, M., Gross, M. et al. (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res, 73, 1180-1189.</ref>
 +
<ref name="ref13">Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi, K.A., Grinstein, J.D., Dorrestein, P.C. and Rosenfeld, M.G. (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 147, 773-788.</ref>
 +
<ref name="ref14">Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. and Bartel, D.P. (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147, 1537-1550.</ref>
 +
<ref name="ref15">Ren, S., Liu, Y., Xu, W., Sun, Y., Lu, J., Wang, F., Wei, M., Shen, J., Hou, J., Gao, X. et al. (2013) Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol, 190, 2278-2287.</ref>
 +
<ref name="ref16">Li, L., Feng, T., Lian, Y., Zhang, G., Garen, A. and Song, X. (2009) Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A, 106, 12956-12961.</ref>
 +
<ref name="ref17">Tseng, J.J., Hsieh, Y.T., Hsu, S.L. and Chou, M.M. (2009) Metastasis associated lung adenocarcinoma transcript 1 is up-regulated in placenta previa increta/percreta and strongly associated with trophoblast-like cell invasion in vitro. Mol Hum Reprod, 15, 725-731.</ref>
 +
<ref name="ref18">Ying, L., Chen, Q., Wang, Y., Zhou, Z., Huang, Y. and Qiu, F. (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst, 8, 2289-2294.</ref>
 +
<ref name="ref19">Xu, C., Yang, M., Tian, J., Wang, X. and Li, Z. (2011) MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol, 39, 169-175.</ref>
 +
<ref name="ref20">Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K. and Akimitsu, N. (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett, 584, 4575-4580.</ref>
 +
<ref name="ref21">Kryger, R., Fan, L., Wilce, P.A. and Jaquet, V. (2012) MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol, 46, 629-634.</ref>
 +
<ref name="ref22">Tian, Y., Zhang, X., Hao, Y., Fang, Z. and He, Y. (2014) Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res.</ref>
 +
<ref name="ref23">Li, Z., Li, C., Liu, C., Yu, S. and Zhang, Y. (2014) Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary.</ref>
 +
<ref name="ref24">Guo, F., Li, Y., Liu, Y., Wang, J. and Li, G. (2010) Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai), 42, 224-229.</ref>
 +
<ref name="ref25">Zhao, Z., Chen, C., Liu, Y. and Wu, C. (2014) 17beta-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochem Biophys Res Commun, 445, 388-393.</ref>
 +
<ref name="ref26">Jeffers, L.K., Duan, K., Ellies, L.G., Seaman, W.T., Burger-Calderon, R.A., Diatchenko, L.B. and Webster-Cyriaque, J. (2013) Correlation of transcription of MALAT-1, a novel noncoding RNA, with deregulated expression of tumor suppressor p53 in small DNA tumor virus models. J Cancer Ther, 4.</ref>
 +
<ref name="ref27">Koshimizu, T.A., Fujiwara, Y., Sakai, N., Shibata, K. and Tsuchiya, H. (2010) Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci, 86, 455-460.</ref>
 +
<ref name="ref28">Schmidt, L.H., Spieker, T., Koschmieder, S., Schaffers, S., Humberg, J., Jungen, D., Bulk, E., Hascher, A., Wittmer, D., Marra, A. et al. (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol, 6, 1984-1992.</ref>
 +
<ref name="ref29">Yamada, K., Kano, J., Tsunoda, H., Yoshikawa, H., Okubo, C., Ishiyama, T. and Noguchi, M. (2006) Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci, 97, 106-112.</ref>
 +
<ref name="ref30">Lin, R., Maeda, S., Liu, C., Karin, M. and Edgington, T.S. (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26, 851-858.</ref>
 +
<ref name="ref31">Lai, M.C., Yang, Z., Zhou, L., Zhu, Q.Q., Xie, H.Y., Zhang, F., Wu, L.M., Chen, L.M. and Zheng, S.S. (2011) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol, 29, 1810-1816.</ref>
 +
<ref name="ref32">Guffanti, A., Iacono, M., Pelucchi, P., Kim, N., Solda, G., Croft, L.J., Taft, R.J., Rizzi, E., Askarian-Amiri, M., Bonnal, R.J. et al. (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics, 10, 163.</ref>
 +
</references>
  
 
{{basic|
 
{{basic|
 
tID = ENST00000534336.1|
 
tID = ENST00000534336.1|
location = chr11+:65265233-65273940|
+
source = Gencode19|
same = lnc-SCYL1-1:2;n343070;Malat1(NR_002819.2)|
+
same = lnc-SCYL1-1:2,NONHSAT022127|
 
classification = intergenic|
 
classification = intergenic|
sequence = <dnaseq>GTAAAGGACTGGGGCCCCGCAACTGGCCTCTCCTGCCCTCTTAAGCGCAGCGCCATTTTAGCAACGCAGAAGCCCGGCGCCGGGAAGCCTCAGCTCGCCTGAAGGCAGGTCCCCTCTGACGCCTCCGGGAGCCCAGGTTTCCCAGAGTCCTTGGGACGCAGCGACGAGTTGTGCTGCTATCTTAGCTGTCCTTATAGGCTGGCCATTCCAGGTGGTGGTATTTAGATAAAACCACTCAAACTCTGCAGTTTGGTCTTGGGGTTTGGAGGAAAGCTTTTATTTTTCTTCCTGCTCCGGTTCAGAAGGTCTGAAGCTCATACCTAACCAGGCATAACACAGAATCTGCAAAACAAAAACCCCTAAAAAAGCAGACCCAGAGCAGTGTAAACACTTCTGGGTGTGTCCCTGACTGGCTGCCCAAGGTCTCTGTGTCTTCGGAGACAAAGCCATTCGCTTAGTTGGTCTACTTTAAAAGGCCACTTGAACTCGCTTTCCATGGCGATTTGCCTTGTGAGCACTTTCAGGAGAGCCTGGAAGCTGAAAAACGGTAGAAAAATTTCCGTGCGGGCCGTGGGGGGCTGGCGGCAACTGGGGGGCCGCAGATCAGAGTGGGCCACTGGCAGCCAACGGCCCCCGGGGCTCAGGCGGGGAGCAGCTCTGTGGTGTGGGATTGAGGCGTTTTCCAAGAGTGGGTTTTCACGTTTCTAAGATTTCCCAAGCAGACAGCCCGTGCTGCTCCGATTTCTCGAACAAAAAAGCAAAACGTGTGGCTGTCTTGGGAGCAAGTCGCAGGACTGCAAGCAGTTGGGGGAGAAAGTCCGCCATTTTGCCACTTCTCAACCGTCCCTGCAAGGCTGGGGCTCAGTTGCGTAATGGAAAGTAAAGCCCTGAACTATCACACTTTAATCTTCCTTCAAAAGGTGGTAAACTATACCTACTGTCCCTCAAGAGAACACAAGAAGTGCTTTAAGAGGTATTTTAAAAGTTCCGGGGGTTTTGTGAGGTGTTTGATGACCCGTTTAAAATATGATTTCCATGTTTCTTTTGTCTAAAGTTTGCAGCTCAAATCTTTCCACACGCTAGTAATTTAAGTATTTCTGCATGTGTAGTTTGCATTCAAGTTCCATAAGCTGTTAAGAAAAATCTAGAAAAGTAAAACTAGAACCTATTTTTAACCGAAGAACTACTTTTTGCCTCCCTCACAAAGGCGGCGGAAGGTGATCGAATTCCGGTGATGCGAGTTGTTCTCCGTCTATAAATACGCCTCGCCCGAGCTGTGCGGTAGGCATTGAGGCAGCCAGCGCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCAGATAAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAAAAATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAATTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAAAGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTTAGATTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTGTAGGTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCGAAGGTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCATTTAAAGCCTAGTTAACGCATTTACTAAACGCAGACGAAAATGGAAAGATTAATTGGGAGTGGTAGGATGAAACAATTTGGAGAAGATAGAAGTTTGAAGTGGAAAACTGGAAGACAGAAGTACGGGAAGGCGAAGAAAAGAATAGAGAAGATAGGGAAATTAGAAGATAAAAACATACTTTTAGAAGAAAAAAGATAAATTTAAACCTGAAAAGTAGGAAGCAGAAGAAAAAAGACAAGCTAGGAAACAAAAAGCTAAGGGCAAAATGTACAAACTTAGAAGAAAATTGGAAGATAGAAACAAGATAGAAAATGAAAATATTGTCAAGAGTTTCAGATAGAAAATGAAAAACAAGCTAAGACAAGTATTGGAGAAGTATAGAAGATAGAAAAATATAAAGCCAAAAATTGGATAAAATAGCACTGAAAAAATGAGGAAATTATTGGTAACCAATTTATTTTAAAAGCCCATCAATTTAATTTCTGGTGGTGCAGAAGTTAGAAGGTAAAGCTTGAGAAGATGAGGGTGTTTACGTAGACCAGAACCAATTTAGAAGAATACTTGAAGCTAGAAGGGGAAGTTGGTTAAAAATCACATCAAAAAGCTACTAAAAGGACTGGTGTAATTTAAAAAAAACTAAGGCAGAAGGCTTTTGGAAGAGTTAGAAGAATTTGGAAGGCCTTAAATATAGTAGCTTAGTTTGAAAAATGTGAAGGACTTTCGTAACGGAAGTAATTCAAGATCAAGAGTAATTACCAACTTAATGTTTTTGCATTGGACTTTGAGTTAAGATTATTTTTTAAATCCTGAGGACTAGCATTAATTGACAGCTGACCCAGGTGCTACACAGAAGTGGATTCAGTGAATCTAGGAAGACAGCAGCAGACAGGATTCCAGGAACCAGTGTTTGATGAAGCTAGGACTGAGGAGCAAGCGAGCAAGCAGCAGTTCGTGGTGAAGATAGGAAAAGAGTCCAGGAGCCAGTGCGATTTGGTGAAGGAAGCTAGGAAGAAGGAAGGAGCGCTAACGATTTGGTGGTGAAGCTAGGAAAAAGGATTCCAGGAAGGAGCGAGTGCAATTTGGTGATGAAGGTAGCAGGCGGCTTGGCTTGGCAACCACACGGAGGAGGCGAGCAGGCGTTGTGCGTAGAGGATCCTAGACCAGCATGCCAGTGTGCCAAGGCCACAGGGAAAGCGAGTGGTTGGTAAAAATCCGTGAGGTCGGCAATATGTTGTTTTTCTGGAACTTACTTATGGTAACCTTTTATTTATTTTCTAATATAATGGGGGAGTTTCGTACTGAGGTGTAAAGGGATTTATATGGGGACGTAGGCCGATTTCCGGGTGTTGTAGGTTTCTCTTTTTCAGGCTTATACTCATGAATCTTGTCTGAAGCTTTTGAGGGCAGACTGCCAAGTCCTGGAGAAATAGTAGATGGCAAGTTTGTGGGTTTTTTTTTTTTACACGAATTTGAGGAAAACCAAATGAATTTGATAGCCAAATTGAGACAATTTCAGCAAATCTGTAAGCAGTTTGTATGTTTAGTTGGGGTAATGAAGTATTTCAGTTTTGTGAATAGATGACCTGTTTTTACTTCCTCACCCTGAATTCGTTTTGTAAATGTAGAGTTTGGATGTGTAACTGAGGCGGGGGGGAGTTTTCAGTATTTTTTTTTGTGGGGGTGGGGGCAAAATATGTTTTCAGTTCTTTTTCCCTTAGGTCTGTCTAGAATCCTAAAGGCAAATGACTCAAGGTGTAACAGAAAACAAGAAAATCCAATATCAGGATAATCAGACCACCACAGGTTTACAGTTTATAGAAACTAGAGCAGTTCTCACGTTGAGGTCTGTGGAAGAGATGTCCATTGGAGAAATGGCTGGTAGTTACTCTTTTTTCCCCCCACCCCCTTAATCAGACTTTAAAAGTGCTTAACCCCTTAAACTTGTTATTTTTTACTTGAAGCATTTTGGGATGGTCTTAACAGGGAAGAGAGAGGGTGGGGGAGAAAATGTTTTTTTCTAAGATTTTCCACAGATGCTATAGTACTATTGACAAACTGGGTTAGAGAAGGAGTGTACCGCTGTGCTGTTGGCACGAACACCTTCAGGGACTGGAGCTGCTTTTATCCTTGGAAGAGTATTCCCAGTTGAAGCTGAAAAGTACAGCACAGTGCAGCTTTGGTTCATATTCAGTCATCTCAGGAGAACTTCAGAAGAGCTTGAGTAGGCCAAATGTTGAAGTTAAGTTTTCCAATAATGTGACTTCTTAAAAGTTTTATTAAAGGGGAGGGGCAAATATTGGCAATTAGTTGGCAGTGGCCTGTTACGGTTGGGATTGGTGGGGTGGGTTTAGGTAATTGTTTAGTTTATGATTGCAGATAAACTCATGCCAGAGAACTTAAAGTCTTAGAATGGAAAAAGTAAAGAAATATCAACTTCCAAGTTGGCAAGTAACTCCCAATGATTTAGTTTTTTTCCCCCCAGTTTGAATTGGGAAGCTGGGGGAAGTTAAATATGAGCCACTGGGTGTACCAGTGCATTAATTTGGGCAAGGAAAGTGTCATAATTTGATACTGTATCTGTTTTCCTTCAAAGTATAGAGCTTTTGGGGAAGGAAAGTATTGAACTGGGGGTTGGTCTGGCCTACTGGGCTGACATTAACTACAATTATGGGAAATGCAAAAGTTGTTTGGATATGGTAGTGTGTGGTTCTCTTTTGGAATTTTTTTCAGGTGATTTAATAATAATTTAAAACTACTATAGAAACTGCAGAGCAAAGGAAGTGGCTTAATGATCCTGAAGGGATTTCTTCTGATGGTAGCTTTTGTATTATCAAGTAAGATTCTATTTTCAGTTGTGTGTAAGCAAGTTTTTTTTTAGTGTAGGAGAAATACTTTTCCATTGTTTAACTGCAAAACAAGATGTTAAGGTATGCTTCAAAAATTTTGTAAATTGTTTATTTTAAACTTATCTGTTTGTAAATTGTAACTGATTAAGAATTGTGATAGTTCAGCTTGAATGTCTCTTAGAGGGTGGGCTTTTGTTGATGAGGGAGGGGAAACTTTTTTTTTTTCTATAGACTTTTTTCAGATAACATCTTCTGAGTCATAACCAGCCTGGCAGTATGATGGCCTAGATGCAGAGAAAACAGCTCCTTGGTGAATTGATAAGTAAAGGCAGAAAAGATTATATGTCATACCTCCATTGGGGAATAAGCATAACCCTGAGATTCTTACTACTGATGAGAACATTATCTGCATATGCCAAAAAATTTTAAGCAAATGAAAGCTACCAATTTAAAGTTACGGAATCTACCATTTTAAAGTTAATTGCTTGTCAAGCTATAACCACAAAAATAATGAATTGATGAGAAATACAATGAAGAGGCAATGTCCATCTCAAAATACTGCTTTTACAAAAGCAGAATAAAAGCGAAAAGAAATGAAAATGTTACACTACATTAATCCTGGAATAAAAGAAGCCGAAATAAATGAGAGATGAGTTGGGATCAAGTGGATTGAGGAGGCTGTGCTGTGTGCCAATGTTTCGTTTGCCTCAGACAGGTATCTCTTCGTTATCAGAAGAGTTGCTTCATTTCATCTGGGAGCAGAAAACAGCAGGCAGCTGTTAACAGATAAGTTTAACTTGCATCTGCAGTATTGCATGTTAGGGATAAGTGCTTATTTTTAAGAGCTGTGGAGTTCTTAAATATCAACCATGGCACTTTCTCCTGACCCCTTCCCTAGGGGATTTCAGGATTGAGAAATTTTTCCATCGAGCCTTTTTAAAATTGTAGGACTTGTTCCTGTGGGCTTCAGTGATGGGATAGTACACTTCACTCAGAGGCATTTGCATCTTTAAATAATTTCTTAAAAGCCTCTAAAGTGATCAGTGCCTTGATGCCAACTAAGGAAATTTGTTTAGCATTGAATCTCTGAAGGCTCTATGAAAGGAATAGCATGATGTGCTGTTAGAATCAGATGTTACTGCTAAAATTTACATGTTGTGATGTAAATTGTGTAGAAAACCATTAAATCATTCAAAATAATAAACTATTTTTATTAGAGAATGTATACTTTTAGAAAGCTGTCTCCTTATTTAAATAAAATAGTGTTTGTCTGTAGTTCAGTGTTGGGGCAATCTTGGGGGGGATTCTTCTCTAATCTTTCAGAAACTTTGTCTGCGAACACTCTTTAATGGACCAGATCAGGATTTGAGCGGAAGAACGAATGTAACTTTAAGGCAGGAAAGACAAATTTTATTCTTCATAAAGTGATGAGCATATAATAATTCCAGGCACATGGCAATAGAGGCCCTCTAAATAAGGAATAAATAACCTCTTAGACAGGTGGGAGATTATGATCAGAGTAAAAGGTAATTACACATTTTATTTCCAGAAAGTCAGGGGTCTATAAATTGACAGTGATTAGAGTAATACTTTTTCACATTTCCAAAGTTTGCATGTTAACTTTAAATGCTTACAATCTTAGAGTGGTAGGCAATGTTTTACACTATTGACCTTATATAGGGAAGGGAGGGGGTGCCTGTGGGGTTTTAAAGAATTTTCCTTTGCAGAGGCATTTCATCCTTCATGAAGCCATTCAGGATTTTGAATTGCATATGAGTGCTTGGCTCTTCCTTCTGTTCTAGTGAGTGTATGAGACCTTGCAGTGAGTTTATCAGCATACTCAAAATTTTTTTCCTGGAATTTGGAGGGATGGGAGGAGGGGGTGGGGCTTACTTGTTGTAGCTTTTTTTTTTTTTACAGACTTCACAGAGAATGCAGTTGTCTTGACTTCAGGTCTGTCTGTTCTGTTGGCAAGTAAATGCAGTACTGTTCTGATCCCGCTGCTATTAGAATGCATTGTGAAACGACTGGAGTATGATTAAAAGTTGTGTTCCCCAATGCTTGGAGTAGTGATTGTTGAAGGAAAAAATCCAGCTGAGTGATAAAGGCTGAGTGTTGAGGAAATTTCTGCAGTTTTAAGCAGTCGTATTTGTGATTGAAGCTGAGTACATTTTGCTGGTGTATTTTTAGGTAAAATGCTTTTTGTTCATTTCTGGTGGTGGGAGGGGACTGAAGCCTTTAGTCTTTTCCAGATGCAACCTTAAAATCAGTGACAAGAAACATTCCAAACAAGCAACAGTCTTCAAGAAATTAAACTGGCAAGTGGAAATGTTTAAACAGTTCAGTGATCTTTAGTGCATTGTTTATGTGTGGGTTTCTCTCTCCCCTCCCTTGGTCTTAATTCTTACATGCAGGAACACTCAGCAGACACACGTATGCGAAGGGCCAGAGAAGCCAGACCCAGTAAGAAAAAATAGCCTATTTACTTTAAATAAACCAAACATTCCATTTTAAATGTGGGGATTGGGAACCACTAGTTCTTTCAGATGGTATTCTTCAGACTATAGAAGGAGCTTCCAGTTGAATTCACCAGTGGACAAAATGAGGAAAACAGGTGAACAAGCTTTTTCTGTATTTACATACAAAGTCAGATCAGTTATGGGACAATAGTATTGAATAGATTTCAGCTTTATGCTGGAGTAACTGGCATGTGAGCAAACTGTGTTGGCGTGGGGGTGGAGGGGTGAGGTGGGCGCTAAGCCTTTTTTTAAGATTTTTCAGGTACCCCTCACTAAAGGCACCGAAGGCTTAAAGTAGGACAACCATGGAGCCTTCCTGTGGCAGGAGAGACAACAAAGCGCTATTATCCTAAGGTCAAGAGAAGTGTCAGCCTCACCTGATTTTTATTAGTAATGAGGACTTGCCTCAACTCCCTCTTTCTGGAGTGAAGCATCCGAAGGAATGCTTGAAGTACCCCTGGGCTTCTCTTAACATTTAAGCAAGCTGTTTTTATAGCAGCTCTTAATAATAAAGCCCAAATCTCAAGCGGTGCTTGAAGGGGAGGGAAAGGGGGAAAGCGGGCAACCACTTTTCCCTAGCTTTTCCAGAAGCCTGTTAAAAGCAAGGTCTCCCCACAAGCAACTTCTCTGCCACATCGCCACCCCGTGCCTTTTGATCTAGCACAGACCCTTCACCCCTCACCTCGATGCAGCCAGTAGCTTGGATCCTTGTGGGCATGATCCATAATCGGTTTCAAGGTAACGATGGTGTCGAGGTCTTTGGTGGGTTGAACTATGTTAGAAAAGGCCATTAATTTGCCTGCAAATTGTTAACAGAAGGGTATTAAAACCACAGCTAAGTAGCTCTATTATAATACTTATCCAGTGACTAAAACCAACTTAAACCAGTAAGTGGAGAAATAACATGTTCAAGAACTGTAATGCTGGGTGGGAACATGTAACTTGTAGACTGGAGAAGATAGGCATTTGAGTGGCTGAGAGGGCTTTTGGGTGGGAATGCAAAAATTCTCTGCTAAGACTTTTTCAGGTGAACATAACAGACTTGGCCAAGCTAGCATCTTAGCGGAAGCTGATCTCCAATGCTCTTCAGTAGGGTCATGAAGGTTTTTCTTTTCCTGAGAAAACAACACGTATTGTTTTCTCAGGTTTTGCTTTTTGGCCTTTTTCTAGCTTAAAAAAAAAAAAAGCAAAAGATGCTGGTGGTTGGCACTCCTGGTTTCCAGGACGGGGTTCAAATCCCTGCGGCGTCTTTGCTTTGACTACTAATCTGTCTTCAGGACTCTTTCTGTATTTCTCCTTTTCTCTGCAGGTGCTAGTTCTTGGAGTTTTGGGGAGGTGGGAGGTAACAGCACAATATCTTTGAACTATATACATCCTTGATGTATAATTTGTCAGGAGCTTGACTTGATTGTATATTCATATTTACACGAGAACCTAATATAACTGCCTTGTCTTTTTCAGGTAATAGCCTGCAGCTGGTGTTTTGAGAAGCCCTACTGCTGAAAACTTAACAATTTTGTGTAATAAAAATGGAGAAGCTCTAAA </dnaseq>|
+
length = 8708 nt|
}}
+
location = chr11+:65265233..65273940|
[[Category:Intergenic]]
+
number = 1|
 
+
exons = 65265233..65273940|
{{annotation|
+
context = <html><div align="center">
tID = ENST00000534336.1|
+
<iframe src="http://lncrna.big.ac.cn/view/?data=species/human&loc=chr11:65265233..65273940&tracklist=0&overview=0&tracks=DNA,RefGene,lncRNA" style=" border-width:0 " width="100%" height="250" scrolling="yes"></iframe>
ann = <tab class=wikitable sep=tab head=top>
+
</div></html>|
Source Type Begin End ID Classfication
+
sequence = <dnaseq>GTAAAGGACTGGGGCCCCGCAACTGGCCTCTCCTGCCCTCTTAAGCGCAGCGCCATTTTAGCAACGCAGAAGCCCGGCGCCGGGAAGCCTCAGCTCGCCTGAAGGCAGGTCCCCTCTGACGCCTCCGGGAGCCCAGGTTTCCCAGAGTCCTTGGGACGCAGCGACGAGTTGTGCTGCTATCTTAGCTGTCCTTATAGGCTGGCCATTCCAGGTGGTGGTATTTAGATAAAACCACTCAAACTCTGCAGTTTGGTCTTGGGGTTTGGAGGAAAGCTTTTATTTTTCTTCCTGCTCCGGTTCAGAAGGTCTGAAGCTCATACCTAACCAGGCATAACACAGAATCTGCAAAACAAAAACCCCTAAAAAAGCAGACCCAGAGCAGTGTAAACACTTCTGGGTGTGTCCCTGACTGGCTGCCCAAGGTCTCTGTGTCTTCGGAGACAAAGCCATTCGCTTAGTTGGTCTACTTTAAAAGGCCACTTGAACTCGCTTTCCATGGCGATTTGCCTTGTGAGCACTTTCAGGAGAGCCTGGAAGCTGAAAAACGGTAGAAAAATTTCCGTGCGGGCCGTGGGGGGCTGGCGGCAACTGGGGGGCCGCAGATCAGAGTGGGCCACTGGCAGCCAACGGCCCCCGGGGCTCAGGCGGGGAGCAGCTCTGTGGTGTGGGATTGAGGCGTTTTCCAAGAGTGGGTTTTCACGTTTCTAAGATTTCCCAAGCAGACAGCCCGTGCTGCTCCGATTTCTCGAACAAAAAAGCAAAACGTGTGGCTGTCTTGGGAGCAAGTCGCAGGACTGCAAGCAGTTGGGGGAGAAAGTCCGCCATTTTGCCACTTCTCAACCGTCCCTGCAAGGCTGGGGCTCAGTTGCGTAATGGAAAGTAAAGCCCTGAACTATCACACTTTAATCTTCCTTCAAAAGGTGGTAAACTATACCTACTGTCCCTCAAGAGAACACAAGAAGTGCTTTAAGAGGTATTTTAAAAGTTCCGGGGGTTTTGTGAGGTGTTTGATGACCCGTTTAAAATATGATTTCCATGTTTCTTTTGTCTAAAGTTTGCAGCTCAAATCTTTCCACACGCTAGTAATTTAAGTATTTCTGCATGTGTAGTTTGCATTCAAGTTCCATAAGCTGTTAAGAAAAATCTAGAAAAGTAAAACTAGAACCTATTTTTAACCGAAGAACTACTTTTTGCCTCCCTCACAAAGGCGGCGGAAGGTGATCGAATTCCGGTGATGCGAGTTGTTCTCCGTCTATAAATACGCCTCGCCCGAGCTGTGCGGTAGGCATTGAGGCAGCCAGCGCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCAGATAAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAAAAATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAATTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAAAGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTTAGATTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTGTAGGTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCGAAGGTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCATTTAAAGCCTAGTTAACGCATTTACTAAACGCAGACGAAAATGGAAAGATTAATTGGGAGTGGTAGGATGAAACAATTTGGAGAAGATAGAAGTTTGAAGTGGAAAACTGGAAGACAGAAGTACGGGAAGGCGAAGAAAAGAATAGAGAAGATAGGGAAATTAGAAGATAAAAACATACTTTTAGAAGAAAAAAGATAAATTTAAACCTGAAAAGTAGGAAGCAGAAGAAAAAAGACAAGCTAGGAAACAAAAAGCTAAGGGCAAAATGTACAAACTTAGAAGAAAATTGGAAGATAGAAACAAGATAGAAAATGAAAATATTGTCAAGAGTTTCAGATAGAAAATGAAAAACAAGCTAAGACAAGTATTGGAGAAGTATAGAAGATAGAAAAATATAAAGCCAAAAATTGGATAAAATAGCACTGAAAAAATGAGGAAATTATTGGTAACCAATTTATTTTAAAAGCCCATCAATTTAATTTCTGGTGGTGCAGAAGTTAGAAGGTAAAGCTTGAGAAGATGAGGGTGTTTACGTAGACCAGAACCAATTTAGAAGAATACTTGAAGCTAGAAGGGGAAGTTGGTTAAAAATCACATCAAAAAGCTACTAAAAGGACTGGTGTAATTTAAAAAAAACTAAGGCAGAAGGCTTTTGGAAGAGTTAGAAGAATTTGGAAGGCCTTAAATATAGTAGCTTAGTTTGAAAAATGTGAAGGACTTTCGTAACGGAAGTAATTCAAGATCAAGAGTAATTACCAACTTAATGTTTTTGCATTGGACTTTGAGTTAAGATTATTTTTTAAATCCTGAGGACTAGCATTAATTGACAGCTGACCCAGGTGCTACACAGAAGTGGATTCAGTGAATCTAGGAAGACAGCAGCAGACAGGATTCCAGGAACCAGTGTTTGATGAAGCTAGGACTGAGGAGCAAGCGAGCAAGCAGCAGTTCGTGGTGAAGATAGGAAAAGAGTCCAGGAGCCAGTGCGATTTGGTGAAGGAAGCTAGGAAGAAGGAAGGAGCGCTAACGATTTGGTGGTGAAGCTAGGAAAAAGGATTCCAGGAAGGAGCGAGTGCAATTTGGTGATGAAGGTAGCAGGCGGCTTGGCTTGGCAACCACACGGAGGAGGCGAGCAGGCGTTGTGCGTAGAGGATCCTAGACCAGCATGCCAGTGTGCCAAGGCCACAGGGAAAGCGAGTGGTTGGTAAAAATCCGTGAGGTCGGCAATATGTTGTTTTTCTGGAACTTACTTATGGTAACCTTTTATTTATTTTCTAATATAATGGGGGAGTTTCGTACTGAGGTGTAAAGGGATTTATATGGGGACGTAGGCCGATTTCCGGGTGTTGTAGGTTTCTCTTTTTCAGGCTTATACTCATGAATCTTGTCTGAAGCTTTTGAGGGCAGACTGCCAAGTCCTGGAGAAATAGTAGATGGCAAGTTTGTGGGTTTTTTTTTTTTACACGAATTTGAGGAAAACCAAATGAATTTGATAGCCAAATTGAGACAATTTCAGCAAATCTGTAAGCAGTTTGTATGTTTAGTTGGGGTAATGAAGTATTTCAGTTTTGTGAATAGATGACCTGTTTTTACTTCCTCACCCTGAATTCGTTTTGTAAATGTAGAGTTTGGATGTGTAACTGAGGCGGGGGGGAGTTTTCAGTATTTTTTTTTGTGGGGGTGGGGGCAAAATATGTTTTCAGTTCTTTTTCCCTTAGGTCTGTCTAGAATCCTAAAGGCAAATGACTCAAGGTGTAACAGAAAACAAGAAAATCCAATATCAGGATAATCAGACCACCACAGGTTTACAGTTTATAGAAACTAGAGCAGTTCTCACGTTGAGGTCTGTGGAAGAGATGTCCATTGGAGAAATGGCTGGTAGTTACTCTTTTTTCCCCCCACCCCCTTAATCAGACTTTAAAAGTGCTTAACCCCTTAAACTTGTTATTTTTTACTTGAAGCATTTTGGGATGGTCTTAACAGGGAAGAGAGAGGGTGGGGGAGAAAATGTTTTTTTCTAAGATTTTCCACAGATGCTATAGTACTATTGACAAACTGGGTTAGAGAAGGAGTGTACCGCTGTGCTGTTGGCACGAACACCTTCAGGGACTGGAGCTGCTTTTATCCTTGGAAGAGTATTCCCAGTTGAAGCTGAAAAGTACAGCACAGTGCAGCTTTGGTTCATATTCAGTCATCTCAGGAGAACTTCAGAAGAGCTTGAGTAGGCCAAATGTTGAAGTTAAGTTTTCCAATAATGTGACTTCTTAAAAGTTTTATTAAAGGGGAGGGGCAAATATTGGCAATTAGTTGGCAGTGGCCTGTTACGGTTGGGATTGGTGGGGTGGGTTTAGGTAATTGTTTAGTTTATGATTGCAGATAAACTCATGCCAGAGAACTTAAAGTCTTAGAATGGAAAAAGTAAAGAAATATCAACTTCCAAGTTGGCAAGTAACTCCCAATGATTTAGTTTTTTTCCCCCCAGTTTGAATTGGGAAGCTGGGGGAAGTTAAATATGAGCCACTGGGTGTACCAGTGCATTAATTTGGGCAAGGAAAGTGTCATAATTTGATACTGTATCTGTTTTCCTTCAAAGTATAGAGCTTTTGGGGAAGGAAAGTATTGAACTGGGGGTTGGTCTGGCCTACTGGGCTGACATTAACTACAATTATGGGAAATGCAAAAGTTGTTTGGATATGGTAGTGTGTGGTTCTCTTTTGGAATTTTTTTCAGGTGATTTAATAATAATTTAAAACTACTATAGAAACTGCAGAGCAAAGGAAGTGGCTTAATGATCCTGAAGGGATTTCTTCTGATGGTAGCTTTTGTATTATCAAGTAAGATTCTATTTTCAGTTGTGTGTAAGCAAGTTTTTTTTTAGTGTAGGAGAAATACTTTTCCATTGTTTAACTGCAAAACAAGATGTTAAGGTATGCTTCAAAAATTTTGTAAATTGTTTATTTTAAACTTATCTGTTTGTAAATTGTAACTGATTAAGAATTGTGATAGTTCAGCTTGAATGTCTCTTAGAGGGTGGGCTTTTGTTGATGAGGGAGGGGAAACTTTTTTTTTTTCTATAGACTTTTTTCAGATAACATCTTCTGAGTCATAACCAGCCTGGCAGTATGATGGCCTAGATGCAGAGAAAACAGCTCCTTGGTGAATTGATAAGTAAAGGCAGAAAAGATTATATGTCATACCTCCATTGGGGAATAAGCATAACCCTGAGATTCTTACTACTGATGAGAACATTATCTGCATATGCCAAAAAATTTTAAGCAAATGAAAGCTACCAATTTAAAGTTACGGAATCTACCATTTTAAAGTTAATTGCTTGTCAAGCTATAACCACAAAAATAATGAATTGATGAGAAATACAATGAAGAGGCAATGTCCATCTCAAAATACTGCTTTTACAAAAGCAGAATAAAAGCGAAAAGAAATGAAAATGTTACACTACATTAATCCTGGAATAAAAGAAGCCGAAATAAATGAGAGATGAGTTGGGATCAAGTGGATTGAGGAGGCTGTGCTGTGTGCCAATGTTTCGTTTGCCTCAGACAGGTATCTCTTCGTTATCAGAAGAGTTGCTTCATTTCATCTGGGAGCAGAAAACAGCAGGCAGCTGTTAACAGATAAGTTTAACTTGCATCTGCAGTATTGCATGTTAGGGATAAGTGCTTATTTTTAAGAGCTGTGGAGTTCTTAAATATCAACCATGGCACTTTCTCCTGACCCCTTCCCTAGGGGATTTCAGGATTGAGAAATTTTTCCATCGAGCCTTTTTAAAATTGTAGGACTTGTTCCTGTGGGCTTCAGTGATGGGATAGTACACTTCACTCAGAGGCATTTGCATCTTTAAATAATTTCTTAAAAGCCTCTAAAGTGATCAGTGCCTTGATGCCAACTAAGGAAATTTGTTTAGCATTGAATCTCTGAAGGCTCTATGAAAGGAATAGCATGATGTGCTGTTAGAATCAGATGTTACTGCTAAAATTTACATGTTGTGATGTAAATTGTGTAGAAAACCATTAAATCATTCAAAATAATAAACTATTTTTATTAGAGAATGTATACTTTTAGAAAGCTGTCTCCTTATTTAAATAAAATAGTGTTTGTCTGTAGTTCAGTGTTGGGGCAATCTTGGGGGGGATTCTTCTCTAATCTTTCAGAAACTTTGTCTGCGAACACTCTTTAATGGACCAGATCAGGATTTGAGCGGAAGAACGAATGTAACTTTAAGGCAGGAAAGACAAATTTTATTCTTCATAAAGTGATGAGCATATAATAATTCCAGGCACATGGCAATAGAGGCCCTCTAAATAAGGAATAAATAACCTCTTAGACAGGTGGGAGATTATGATCAGAGTAAAAGGTAATTACACATTTTATTTCCAGAAAGTCAGGGGTCTATAAATTGACAGTGATTAGAGTAATACTTTTTCACATTTCCAAAGTTTGCATGTTAACTTTAAATGCTTACAATCTTAGAGTGGTAGGCAATGTTTTACACTATTGACCTTATATAGGGAAGGGAGGGGGTGCCTGTGGGGTTTTAAAGAATTTTCCTTTGCAGAGGCATTTCATCCTTCATGAAGCCATTCAGGATTTTGAATTGCATATGAGTGCTTGGCTCTTCCTTCTGTTCTAGTGAGTGTATGAGACCTTGCAGTGAGTTTATCAGCATACTCAAAATTTTTTTCCTGGAATTTGGAGGGATGGGAGGAGGGGGTGGGGCTTACTTGTTGTAGCTTTTTTTTTTTTTACAGACTTCACAGAGAATGCAGTTGTCTTGACTTCAGGTCTGTCTGTTCTGTTGGCAAGTAAATGCAGTACTGTTCTGATCCCGCTGCTATTAGAATGCATTGTGAAACGACTGGAGTATGATTAAAAGTTGTGTTCCCCAATGCTTGGAGTAGTGATTGTTGAAGGAAAAAATCCAGCTGAGTGATAAAGGCTGAGTGTTGAGGAAATTTCTGCAGTTTTAAGCAGTCGTATTTGTGATTGAAGCTGAGTACATTTTGCTGGTGTATTTTTAGGTAAAATGCTTTTTGTTCATTTCTGGTGGTGGGAGGGGACTGAAGCCTTTAGTCTTTTCCAGATGCAACCTTAAAATCAGTGACAAGAAACATTCCAAACAAGCAACAGTCTTCAAGAAATTAAACTGGCAAGTGGAAATGTTTAAACAGTTCAGTGATCTTTAGTGCATTGTTTATGTGTGGGTTTCTCTCTCCCCTCCCTTGGTCTTAATTCTTACATGCAGGAACACTCAGCAGACACACGTATGCGAAGGGCCAGAGAAGCCAGACCCAGTAAGAAAAAATAGCCTATTTACTTTAAATAAACCAAACATTCCATTTTAAATGTGGGGATTGGGAACCACTAGTTCTTTCAGATGGTATTCTTCAGACTATAGAAGGAGCTTCCAGTTGAATTCACCAGTGGACAAAATGAGGAAAACAGGTGAACAAGCTTTTTCTGTATTTACATACAAAGTCAGATCAGTTATGGGACAATAGTATTGAATAGATTTCAGCTTTATGCTGGAGTAACTGGCATGTGAGCAAACTGTGTTGGCGTGGGGGTGGAGGGGTGAGGTGGGCGCTAAGCCTTTTTTTAAGATTTTTCAGGTACCCCTCACTAAAGGCACCGAAGGCTTAAAGTAGGACAACCATGGAGCCTTCCTGTGGCAGGAGAGACAACAAAGCGCTATTATCCTAAGGTCAAGAGAAGTGTCAGCCTCACCTGATTTTTATTAGTAATGAGGACTTGCCTCAACTCCCTCTTTCTGGAGTGAAGCATCCGAAGGAATGCTTGAAGTACCCCTGGGCTTCTCTTAACATTTAAGCAAGCTGTTTTTATAGCAGCTCTTAATAATAAAGCCCAAATCTCAAGCGGTGCTTGAAGGGGAGGGAAAGGGGGAAAGCGGGCAACCACTTTTCCCTAGCTTTTCCAGAAGCCTGTTAAAAGCAAGGTCTCCCCACAAGCAACTTCTCTGCCACATCGCCACCCCGTGCCTTTTGATCTAGCACAGACCCTTCACCCCTCACCTCGATGCAGCCAGTAGCTTGGATCCTTGTGGGCATGATCCATAATCGGTTTCAAGGTAACGATGGTGTCGAGGTCTTTGGTGGGTTGAACTATGTTAGAAAAGGCCATTAATTTGCCTGCAAATTGTTAACAGAAGGGTATTAAAACCACAGCTAAGTAGCTCTATTATAATACTTATCCAGTGACTAAAACCAACTTAAACCAGTAAGTGGAGAAATAACATGTTCAAGAACTGTAATGCTGGGTGGGAACATGTAACTTGTAGACTGGAGAAGATAGGCATTTGAGTGGCTGAGAGGGCTTTTGGGTGGGAATGCAAAAATTCTCTGCTAAGACTTTTTCAGGTGAACATAACAGACTTGGCCAAGCTAGCATCTTAGCGGAAGCTGATCTCCAATGCTCTTCAGTAGGGTCATGAAGGTTTTTCTTTTCCTGAGAAAACAACACGTATTGTTTTCTCAGGTTTTGCTTTTTGGCCTTTTTCTAGCTTAAAAAAAAAAAAAGCAAAAGATGCTGGTGGTTGGCACTCCTGGTTTCCAGGACGGGGTTCAAATCCCTGCGGCGTCTTTGCTTTGACTACTAATCTGTCTTCAGGACTCTTTCTGTATTTCTCCTTTTCTCTGCAGGTGCTAGTTCTTGGAGTTTTGGGGAGGTGGGAGGTAACAGCACAATATCTTTGAACTATATACATCCTTGATGTATAATTTGTCAGGAGCTTGACTTGATTGTATATTCATATTTACACGAGAACCTAATATAACTGCCTTGTCTTTTTCAGGTAATAGCCTGCAGCTGGTGTTTTGAGAAGCCCTACTGCTGAAAACTTAACAATTTTGTGTAATAAAAATGGAGAAGCTCTAAA</dnaseq>|
HAVANA gene 65265233 65273940 ENSG00000251562.3 lincRNA
 
HAVANA transcript 65265233 65273940 ENST00000534336.1 lincRNA
 
HAVANA exon 65265233 65273940 NA NA
 
</tab>|
 
}}
 
 
 
{{lnc|
 
tID = ENST00000534336.1|
 
ltID = lnc-SCYL1-1:2|
 
gID = lnc-SCYL1-1|
 
size = 8708 bp|
 
exons = 1|
 
sources = Biogazelle lncRNA chip; Ensembl release 64 - Sep 2011; Gencode v13; Ensembl release 68 - Jul 2012|
 
tNames = ENST00000534336; ENST00000534336.1; MALAT1-001; OTTHUMT00000389143.1|
 
gNames = ENSG00000251562; MALAT1; ENSG00000251562.3; OTTHUMG00000166322.1|
 
sStructure = <html><img src="http://www.lncipedia.org/rnafold/lnc-SCYL1-1:2.gif" border="0" width="400" height="400" /></html>|
 
score = 0.280589 (coding) |
 
tFrames = 0|
 
fFrames = 0|
 
LCM = no|
 
LCZ = no|
 
hits = 0|
 
energy = |
 
PValue = |
 
prediction = <tab class=wikitablegrey sep=tab head=top>
 
MicroRNAMirTarget Score
 
hsa-miR-519e-5p 98.87
 
hsa-miR-4659b-3p 98.85
 
hsa-miR-3148 98.85
 
hsa-miR-4659a-3p 98.72
 
hsa-miR-515-5p 98.48
 
hsa-miR-875-3p 97.03
 
hsa-miR-548l 95.71
 
hsa-miR-4282 94.80
 
hsa-miR-335-3p 94.37
 
hsa-miR-3678-3p 93.79
 
hsa-miR-942 93.53
 
hsa-miR-508-5p 92.40
 
hsa-miR-579 92.28
 
hsa-miR-1260a 91.15
 
hsa-miR-4766-5p 91.12
 
hsa-miR-1260b 90.96
 
hsa-miR-1 90.91
 
hsa-miR-644b-3p 90.79
 
hsa-miR-3622b-3p 90.14
 
hsa-miR-4263 89.95
 
hsa-miR-3622a-3p 89.93
 
hsa-miR-944 89.48
 
hsa-miR-548y 89.42
 
hsa-miR-548as-5p 89.12
 
hsa-miR-548ar-5p 88.76
 
hsa-miR-548am-5p 88.24
 
hsa-miR-548au-5p 88.24
 
hsa-miR-548c-5p 88.24
 
hsa-miR-548h-5p 88.24
 
hsa-miR-548o-5p 88.24
 
hsa-miR-548ak 88.19
 
hsa-miR-548w 88.19
 
hsa-miR-548b-5p 87.80
 
hsa-miR-548i 87.74
 
hsa-miR-548a-5p 87.72
 
hsa-miR-206 87.50
 
hsa-miR-4429 87.48
 
hsa-miR-548d-5p 87.25
 
hsa-miR-548j 86.79
 
hsa-miR-548ap-5p 86.77
 
hsa-miR-548aj-3p 86.66
 
hsa-miR-548x-3p 86.66
 
hsa-miR-5582-3p 86.61
 
hsa-miR-320a 86.60
 
hsa-miR-320b 86.60
 
hsa-miR-320c 86.57
 
hsa-miR-320d 86.57
 
hsa-miR-548n 86.20
 
hsa-miR-548ab 85.61
 
hsa-miR-3919 84.39
 
hsa-miR-5003-3p 83.98
 
hsa-miR-1244 83.18
 
hsa-miR-532-3p 83.04
 
hsa-miR-3664-3p 82.09
 
hsa-miR-548f 82.08
 
hsa-miR-548e 82.05
 
hsa-miR-4436b-5p 81.14
 
hsa-miR-3680-3p 80.87
 
hsa-miR-409-5p 80.75
 
hsa-miR-4422 80.47
 
hsa-miR-509-5p 80.18
 
hsa-miR-3925-3p 79.80
 
hsa-miR-1237 79.47
 
hsa-miR-4291 79.28
 
hsa-miR-3124-3p 79.26
 
hsa-miR-509-3-5p 79.21
 
hsa-miR-548am-3p 78.97
 
hsa-miR-548ah-3p 78.96
 
hsa-miR-1290 78.69
 
hsa-miR-935 78.59
 
hsa-miR-4307 78.40
 
hsa-miR-19a-5p 78.14
 
hsa-miR-3127-3p 77.91
 
hsa-miR-3673 77.58
 
hsa-miR-3158-5p 77.51
 
hsa-miR-126-5p 77.48
 
hsa-miR-205-5p 77.36
 
hsa-miR-3658 77.15
 
hsa-miR-384 76.66
 
hsa-miR-19b-2-5p 76.40
 
hsa-miR-3714 76.30
 
hsa-miR-361-3p 76.28
 
hsa-miR-19b-1-5p 76.11
 
hsa-miR-512-5p 75.73
 
hsa-miR-216b 75.23
 
hsa-miR-5001-3p 74.52
 
hsa-miR-4420 74.34
 
hsa-miR-548ae 74.13
 
hsa-miR-613 73.85
 
hsa-miR-548aq-3p 73.64
 
hsa-miR-1226-3p 73.39
 
hsa-miR-578 72.73
 
hsa-miR-558 72.21
 
hsa-miR-3688-3p 71.95
 
hsa-miR-4666a-3p 71.80
 
hsa-miR-4795-3p 71.73
 
hsa-miR-26b-5p 71.30
 
hsa-miR-576-5p 71.26
 
hsa-miR-1243 71.13
 
hsa-miR-26a-5p 70.86
 
hsa-miR-217 70.77
 
hsa-miR-4418 70.75
 
hsa-miR-548av-3p 70.36
 
hsa-miR-676-5p 69.94
 
hsa-miR-4724-5p 69.93
 
hsa-miR-5581-5p 69.69
 
hsa-miR-3123 69.62
 
hsa-miR-197-3p 69.51
 
hsa-miR-330-5p 68.67
 
hsa-miR-1297 68.56
 
hsa-miR-499a-5p 67.91
 
hsa-miR-374b-3p 67.89
 
hsa-miR-3675-3p 67.41
 
hsa-miR-3182 67.40
 
hsa-miR-338-3p 66.87
 
hsa-miR-5696 66.18
 
hsa-miR-4691-3p 65.79
 
hsa-miR-4760-3p 65.18
 
hsa-miR-224-5p 64.85
 
hsa-miR-130a-5p 64.02
 
hsa-miR-2682-5p 63.66
 
hsa-miR-1910 63.13
 
hsa-miR-34b-5p 62.79
 
hsa-miR-4773 62.74
 
hsa-miR-4733-5p 62.74
 
hsa-miR-3146 62.30
 
hsa-miR-3171 62.23
 
hsa-miR-3936 62.23
 
hsa-miR-4311 62.21
 
hsa-miR-559 62.06
 
hsa-miR-4753-5p 62.05
 
hsa-miR-548ar-3p 62.02
 
hsa-miR-516a-3p 61.81
 
hsa-miR-516b-3p 61.81
 
hsa-miR-4753-3p 61.66
 
hsa-miR-181b-3p 61.64
 
hsa-miR-4703-3p 61.16
 
hsa-miR-1224-3p 60.94
 
hsa-miR-141-5p 60.91
 
hsa-miR-548as-3p 60.71
 
hsa-miR-1236 60.46
 
hsa-miR-548aq-5p 60.28
 
hsa-miR-4777-5p 60.24
 
hsa-miR-548at-5p 59.98
 
hsa-miR-548a-3p 59.92
 
hsa-miR-938 59.67
 
hsa-miR-4448 59.43
 
hsa-miR-581 58.92
 
hsa-miR-4495 58.69
 
hsa-miR-23b-3p 58.60
 
hsa-miR-3120-5p 58.42
 
hsa-miR-10b-3p 58.37
 
hsa-miR-3667-3p 58.30
 
hsa-miR-634 58.18
 
hsa-miR-5002-5p 57.99
 
hsa-miR-511 57.64
 
hsa-miR-23c 57.43
 
hsa-miR-193b-5p 57.29
 
hsa-miR-595 57.14
 
hsa-miR-4428 57.00
 
hsa-miR-3194-5p 56.86
 
hsa-miR-513c-3p 56.77
 
hsa-miR-449c-5p 56.63
 
hsa-miR-3926 56.54
 
hsa-miR-23a-3p 56.16
 
hsa-miR-4317 56.10
 
hsa-miR-1266 55.99
 
hsa-miR-4768-5p 55.58
 
hsa-miR-513a-3p 55.54
 
hsa-let-7a-3p 55.36
 
hsa-miR-378a-5p 55.13
 
hsa-miR-3185 55.09
 
hsa-miR-4297 54.93
 
hsa-miR-522-3p 54.42
 
hsa-miR-4776-3p 54.29
 
hsa-miR-4728-3p 53.65
 
hsa-miR-5682 53.29
 
hsa-miR-1299 53.26
 
hsa-let-7f-1-3p 53.13
 
hsa-miR-3074-5p 53.12
 
hsa-miR-1265 53.08
 
hsa-miR-224-3p 52.92
 
hsa-miR-374b-5p 52.81
 
hsa-miR-1264 52.66
 
hsa-miR-4510 52.64
 
hsa-let-7b-3p 52.30
 
hsa-miR-4457 52.20
 
hsa-miR-10a-3p 51.94
 
hsa-miR-548au-3p 51.84
 
hsa-miR-4419a 51.56
 
hsa-miR-3677-5p 51.44
 
hsa-miR-29b-1-5p 51.29
 
hsa-miR-548ad 51.18
 
hsa-miR-4482-3p 50.88
 
hsa-miR-3158-3p 50.86
 
hsa-miR-605 50.81
 
hsa-miR-5194 50.71
 
hsa-miR-4517 50.63
 
hsa-miR-4465 50.46
 
hsa-miR-4705 50.42
 
hsa-miR-4324 50.40
 
hsa-miR-616-5p 50.18
 
hsa-miR-105-5p 50.10
 
hsa-miR-5695 50.01
 
hsa-miR-4732-3p 50.00
 
hsa-miR-561-5p 50.00
 
</tab>|
 
}}
 
 
 
{{lncrnadb|
 
tID = ENST00000534336.1|
 
ltID = Malat1(NR_002819.2)|
 
ann = <tab class=wikitable sep=tab head=top>
 
Section Description
 
ID Malat1(NR_002819.2)
 
Characteristics Intergenic ~7kb single exon transcript ([http://www.ncbi.nlm.nih.gov/pubmed/12970751 Ji (2003)], [http://www.ncbi.nlm.nih.gov/pubmed/17270048 Hutchinson (2007)]).<br /> A conserved tRNA-like sequence at the 3' end is cleaved off and processed to generated a short tRNA-like ncRNA mascRNA (MALAT1-associated small cytoplasmic RNA) [http://www.ncbi.nlm.nih.gov/pubmed/19041754 (Wilusz (2008))].<br /> Post transcriptional processing of Malat1 therefore allows two ncRNAs to be created from the one original transcript [http://www.ncbi.nlm.nih.gov/pubmed/19041754 (Wilusz (2008))].
 
Expression Both Malat1 and the processed mascRNA transcript are expressed in a wide range of tissues ([http://www.ncbi.nlm.nih.gov/pubmed/12970751 Ji (2003)], [http://www.ncbi.nlm.nih.gov/pubmed/17270048 Hutchinson (2007)], [http://www.ncbi.nlm.nih.gov/pubmed/19041754 Wilusz (2008))], [http://www.ncbi.nlm.nih.gov/pubmed/20729808) Bernard (2010)], [http://www.ncbi.nlm.nih.gov/pubmed/22196729 (Ulitsky (2011))].<br /> Malat1 is highly expressed in the brain. RNA fluorescence in-situ hybridization (RNA-FISH) on adult mouse brain sections showed high expression of nuclear-localized Malat1 transcripts in pyramidal neurons of the hippocampus, Purkinje cells of the cerebellum and neurons of the substantia nigra and motoneurons, but very low levels in non-neuronal cells [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))]. In the hippocampus and in Purkinje cells, Malat1 was first detected between post-natal day 0 (P0) and P7 and its level increased until P28 [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))]. This high expression appears to come from up-regulation of Malat1 during differentiation, with in-vitro differentiation of neural stem cells showing significant up-regulation of expression in neuronal and glial differentiated progeny [http://www.ncbi.nlm.nih.gov/pubmed/20137068 (Mercer (2010))].<br /> Expressed in the nucleus accumbens of normal human brains and upregulated in this brain region in heroin abusers [http://www.ncbi.nlm.nih.gov/pubmed/21128942 (Michelhaugh (2010))].<br /> In neuroblastoma cells Malat1 was up-regulated by the hormone oxytocin [http://www.ncbi.nlm.nih.gov/pubmed/20149803 (Koshimizu (2010))].<br /> Malat1 is up-regulated in a range of cancers ([http://www.ncbi.nlm.nih.gov/pubmed/12970751 Ji (2003)], [http://www.ncbi.nlm.nih.gov/pubmed/16441420 Yamada (2006)], [http://www.ncbi.nlm.nih.gov/pubmed/16878148 Lin (2007)], [http://www.ncbi.nlm.nih.gov/pubmed/19379481 Guffanti (2009)]).<br /> High expression of Malat1 is associated with metastasis in certain histological subtypes of non-small cell lung cancer (NSCLC) and is predictive of poor prognosis [http://www.ncbi.nlm.nih.gov/pubmed/12970751 (Ji (2003))].<br /> Malat1 is up-regulated in placenta previa increta/percreta, a disease characterised by excessive invasion of fetal placental trophoblasts into the uterus  [http://www.ncbi.nlm.nih.gov/pubmed/19690017 (Tseng (2009))].<br /> Malat1 is stable in human B cells and Hela and wt MEFs (half-life >7 hrs) but has significantly lower stability in mouse 3T3 and N2A cells. Suggesting differences in Malat1 stability both within and between species ([http://www.ncbi.nlm.nih.gov/pubmed/19561200 Friedel (2009)], [http://www.ncbi.nlm.nih.gov/pubmed/20729808 Bernard (2010)], [http://www.ncbi.nlm.nih.gov/pubmed/22406755 Clark (2012)], [http://www.ncbi.nlm.nih.gov/pubmed/22369889 Tani (2012)]).<br /> Malat1 localises to SC35 domain nuclear speckles in several cell lines [http://www.ncbi.nlm.nih.gov/pubmed/17270048 (Hutchinson (2007))] [http://www.ncbi.nlm.nih.gov/pubmed/19217333 (Clemson (2009))]. Localisation to nuclear speckles is transcription-dependent, as RNA pol II inhibition promoted re-distribution of Malat1 ncRNA from nuclear speckles to a homogenous nuclear localisation [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))]. Malat1 co-localises with pre-mRNA-splicing factor SF2/ASF and CC3 antigen in the nuclear speckles [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))].<br /> MALAT1 is enriched in nuclear speckles in interphase cells and concentrates in mitotic interchromatin granule clusters (IGCs, structural analogs of nuclear speckles present in mitotic cells), but unlike Neat1 it is not required for the structural integrity of the nuclear domain [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> mascRNA derived from Malat1 is transported to the cytoplasm [http://www.ncbi.nlm.nih.gov/pubmed/19041754 (Wilusz (2008))].
 
Function Summary: Malat1 has been found to regulate alternative splicing of endogenous target genes, and it is implicated in cancer and a series of molecular and cellular phenotypes, as indicated below.<br /> Identified as an oncogene that promotes tumorigensis. Expression of a Malat1 fragment in NIH 3T3 cells transformed cells [http://www.ncbi.nlm.nih.gov/pubmed/19625619 (Li (2009))].<br /> Knockdown inhibited cell mobility and lead to decreased expression of several genes (CTHRC1, CCT4, HMMR, or ROD1) that promoted cell migration [http://www.ncbi.nlm.nih.gov/pubmed/20937273 (Tano (2010))]. This result may also explain why knockdown inhibited trophoblast-like cell invasion in-vitro, with MALAT1 hypothesised to regulate the level of trophoblast invasion into the uterus in vivo [http://www.ncbi.nlm.nih.gov/pubmed/19690017 (Tseng (2009))].<br /> MALAT1 depletion resulted in aberrant mitosis, with a large fraction of cells accumulating at G2/M boundary, and increased cell death [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> Depletion of Malat1 in neuroblastoma cells indicated that Malat1 affects the expression of genes involved not only in the organization and the function of the nucleus, but also in synapse function and dendrite development. In cultured hippocampal neurons, knock-down of Malat1 decreased synaptic density, whereas its over-expression resulted in a cell-autonomous increase in synaptogenesis [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))].<br /> There is a significant enrichment for SRSF1 (SF2/ASF) binding sites within the 5' half of both human and mouse MALAT1, whose direct interaction has been demonstrated, and is dependent on its canonical RRM (RRM1) or the pseudo RRM (RRM2) domains ([http://www.ncbi.nlm.nih.gov/pubmed/19116412 Sanford (2009)], [http://www.ncbi.nlm.nih.gov/pubmed/20797886 Tripathi (2010)]). Independent sequence elements in MALAT1 influence its distribution to nuclear speckles and the recruitment of SRSF1 [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> Additional interactions have been found between MALAT1 and SRSF1, SRSF2, and SRSF3 proteins, but only weak interactions with SRSF5 and PSP1 (an RNA-binding protein that is a component of paraspeckles) have been identified [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> Knock-down of nuclear Malat1 in a transfected U2OS cell line showed that it modulates the recruitment of SR proteins (SRSF1 or SF2/ASF and SC35) to a transcriptionally active transgene array (stably integrated), indicating a role in the regulation of the association of pre-mRNA-splicing factors to transcription sites and control of post-transcriptional gene expression [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))]. Malat1 modulates the speckle association of a subset of pre-mRNA splicing factors, such as SF1, U2AF-65, SF3a60, and B-U2snRNP [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> Malat1-depleted HeLa cells show increased cellular levels of dephosphorylated SRSF1 (SF2/ASF) [http://www.ncbi.nlm.nih.gov/pubmed/20729808 (Bernard (2010))], as well as a moderately increased cytoplasmic pool of poly(A)+ RNA [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))]. It has recently been shown to regulate alternative splicing of endogenous target genes by modulating SR splicing factor phosphorylation, affecting their levels and the distribution and ratio of phosphorylated to dephosphorylated pools [http://www.ncbi.nlm.nih.gov/pubmed/20797886 (Tripathi (2010))].<br /> Suggested to interact with the PRC2 complex in the HCT-116 cancer cell line [http://www.ncbi.nlm.nih.gov/pubmed/22659877 (Guil (2012))].
 
Conservation Therian mammals (found in oppossum as well as placental mammals) [http://www.ncbi.nlm.nih.gov/pubmed/17270048 (Hutchinson (2007))].<br /> Recently described in zebrafish. Sequence homology to zebrafish was limited to the 3°Ø end, but the ~7kb long, single exon structure as well as positional synteny was conserved, as was the high expression in brain found identified in mammals [http://www.ncbi.nlm.nih.gov/pubmed/22196729 (Ulitsky (2011))].
 
Name Malat1: Metastasis-associated lung adenocarcinoma transcript 1.<br /> Neat2: Nuclear enriched abundant transcript 2
 
</tab>|
 
 
}}
 
}}
 +
[[Category:Intergenic]][[Category:lnc-SCYL1-1]][[Category:NONHSAG008675]][[Category:ENSG00000251562.3]][[Category:Transcripts]][[Category:Transcripts]]

Latest revision as of 12:12, 11 August 2019

MALAT-1 is overexpressed in many kinds of cancers and is closely associated with tumor growth and metastasis.

Annotated Information

Transcriptomic Nomenclature

N11QT0096001-SSCY-LMXXX01 Help

Name

Malat1: Metastasis-associated lung adenocarcinoma transcript 1

Neat2: Nuclear enriched abundant transcript 2

LncBook ID: HSALNT0289363

Characteristics

RNAfold image LNCipedia link

Protein coding potential[LNCipedia Help]:

  • CPC coding potential score: 0.280589 (coding)
  • HMMER Pfam domains in 3' to 5' reading frames: 0
  • HMMER Pfam domains in 5' to 3' reading frames: 0

Malat1 gene is localized in the intergenic region of the genome. It is about 8kb in length and the transcript has only one exon [1][2]. The 3’-end of the transcript is a conserved tRNA-like sequence, which can be modified by RNase P and cleaved by RNase Z to yield another ncRNA (61nt), the cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA) [3].

Malat1 is stable in human B cells (half-life: 16.5 h) [4] and Hela cells (half-life: about 7 h) [5], but is unstable in mouse 3T3 cells (half-life: 3 h) [4] and N2A cells ( half-life: 4 h) [4]. MALAT-1 is generally stable in cancer cells, with the half-life ranging from ~ 9 h to > 12 h in various cancer cells [6]. Xrn2, PM/Scl-75, PARN, and Mtr4, known nuclear RNases or RNA helicases, do not affect MALAT-1 degradation [6].

Cellular Localization

MALAT-1 localizes predominately in the nucleus [2]. In G2/M cell cycle phase, MALAT-1 transcripts partially translocate from the nucleus into the cytoplasm [7]. RNPS1, SRm160, and IBP160 are found to contribute to the nuclear localization of MALAT-1 [8].

Function

Hypothetical model depicting the role of MALAT1 in AS (alternative splicing) regulation in normal cells (Ea) and MALAT1-depleted cells (Eb) [9].

MALAT-1 localizes specifically in the SC35 splicing domains in the nucleus, suggesting its function in pre-mRNA metabolism or specific nuclear structures [2]. The later studies found that MALAT-1 could modulate mRNA alternative splicing via its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins that are involved in the splicing machinery [9]. MALAT-1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance [10]. These results indicate that alternative functions for MALAT-1 may exist. However, splicing alterations were not found after Malat1 ablation in mice [11]. Also, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes in lung cancer cells [12].

MALAT-1 can function by participating in localization of important proteins, such as hnRNP C [7] and growth control genes [13]. MALAT-1 is found to regulate cell cycle progress in G2/M phase [7][9], G1/S phase [14], and G0/G1 phase [15]. In the G2/M phase, MALAT-1 interacts with hnRNP C to facilitate the cytoplasmic translocation of hnRNP C, leading to cell cycle progresion [7]. MALAT1 could interact with the demethylated form of CBX4 (chromobox homolog 4), and controls the relocalization of growth control genes between polycomb bodies and interchromatin granules [13]. MALAT1 could bind to Human PSF (hPSF) protein to release hPSF from a repressed proto-oncogene and activate transcription, driving transformation and tumorigenesis [16].

MALAT-1 regulates synaptogenesis [10]and is involved in the development of advanced invasive placentation [17]. Deregulation of MALAT-1 is found to be closely associated with the development of cancer. In vitro, it is found that MALAT-1 promotes epithelial–mesenchymal transition (EMT) of bladder cancer cells by activating Wnt signaling [18]. 3' end of MALAT-1 (6918 nt-8441 nt) is found to be important in colorectal cancer metastasis [19]. In lung adenocarcinoma cells, MALAT-1 may regulate cell motility through transcriptional and post-transcriptional regulation of motility related gene expression [20]. However, mechanisms of these functions are not clear.

Expression

MALAT-1 is ubiquity expressed in various normal tissues [1][2][3][10], but the expression levels are quite different among tissues [1][2][10].

MALAT-1 is over-expressed in many human carcinomas, including those of the breast, pancreas, lung, colon, prostate, and liver [21].

It is also found to be up-regulated in the cerebellum, hippocampus and brain stem of human alcoholics [22].

Primer Forward primer Reverse primer
RT-PCR 5'-AAAGCAAGGTCTCCCCACAAG-3' 5'-GGTCTGTGCTAGATCAAAAGGCA-3'[23][24]
5'-CTTCCCTAGGGGATTTCAGG-3' 5'-GCCCACAGGAACAAGTCCTA-3'[15]
5'-GAATTGCGTCATTTAAAGCCTAGTT-3' 5'-GTTTCATCCTACCACTCCCAATTAAT-3'[25]
5'-cggaagtaattcaagatcaagag-3' 5'-actgaatccacttctgtgtagc-3'[16]
cDNA amplication 5'-GTAGGGCCCTCCATGGCGATTTGCCTTGTGAGCAC-3' 5'-GAGCTCGAGGTCCTGAAGACAGATTAGTAGTCAAAGC-3'[6]
Northern blot 5'-GGCAGGAGAGACAACAAAGC-3' 5'-CTCGACACCATCGTTACCT-3'[2]

Regulation

In breast cancer cells, high concentration E2 treatment largely decreases MALAT-1 RNA level in an ERa independent way [26].

Disruption of p53 appears to play an important role in the up-regulation of MALAT-1 [27].

CREB (cyclic AMP-responsive element binding) transcription factor is found to bind to the defined proximal promoter of the MALAT1 gene, leading to the up-regulation of MALAT1 [28].

Diseases

MALAT-1 was first identified as a prognostic marker for metastasis and patient survival in non-small cell lung cancer (NSCLC) [29]. It is found to be overexpressed in various tumors and cancer cell lines, including lung cancer [1][21][29], endometrial stromal sarcoma of the uterus [30], hepatocellular carcinomas [21][31], breast cancer [21][32], pancreas cancer [21], colon cancer [21], prostate cancer [15][21], melanoma [23], bladder cancer [18]. Overexpression of MALAT-1 in cancer cells is closely associated with tumor growth and metastasis [12][20][23][29].

There is no significant difference in MALAT-1 lncRNA levels in normal pituitary tissues, invasive NFPAs (non-functioning pituitary adenomas), and non-invasive NFPAs, and no significant association between MALAT-1 expression and patient clinicopathological characteristics [24].

Evolution

MALAT-1 is highly conserved across mammals [10]. However, sequence conservation is limited in vertebrates. Sequence similarity between zebrafish and mammalian MALAT1 is restricted to the 3′ end, while the length of MALAT1 (~7 kb) along with the gene structure appeare to be roughly fixed in all vertebrates [14].

Associated components

  • CBX4 (chromobox homolog 4) [13]
  • Human PSF (hPSF) protein [16]

Labs working on this lncRNA

  • Department of Medicine, University of Münster, Germany
  • Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
  • Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
  • Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China

References

Annotation originally sourced from lncRNAdb.

  1. Jump up to: 1.0 1.1 1.2 1.3 Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H., Bulk, E. et al. (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-8041.
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 Hutchinson, J.N., Ensminger, A.W., Clemson, C.M., Lynch, C.R., Lawrence, J.B. and Chess, A. (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.
  3. Jump up to: 3.0 3.1 Wilusz, J.E., Freier, S.M. and Spector, D.L. (2008) 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell, 135, 919-932.
  4. Jump up to: 4.0 4.1 4.2 Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E. and Mattick, J.S. (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res, 22, 885-898.
  5. Jump up Tani, H., Mizutani, R., Salam, K.A., Tano, K., Ijiri, K., Wakamatsu, A., Isogai, T., Suzuki, Y. and Akimitsu, N. (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res, 22, 947-956.
  6. Jump up to: 6.0 6.1 6.2 Tani, H., Nakamura, Y., Ijiri, K. and Akimitsu, N. (2010) Stability of MALAT-1, a nuclear long non-coding RNA in mammalian cells, varies in various cancer cells. Drug Discov Ther, 4, 235-239.
  7. Jump up to: 7.0 7.1 7.2 7.3 7.4 Yang, F., Yi, F., Han, X., Du, Q. and Liang, Z. (2013) MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett, 587, 3175-3181.
  8. Jump up Miyagawa, R., Tano, K., Mizuno, R., Nakamura, Y., Ijiri, K., Rakwal, R., Shibato, J., Masuo, Y., Mayeda, A., Hirose, T. et al. (2012) Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA, 18, 738-751.
  9. Jump up to: 9.0 9.1 9.2 Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S.M., Bennett, C.F., Sharma, A., Bubulya, P.A. et al. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 39, 925-938.
  10. Jump up to: 10.0 10.1 10.2 10.3 10.4 Bernard, D., Prasanth, K.V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z., Zhang, M.Q., Sedel, F., Jourdren, L., Coulpier, F. et al. (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J, 29, 3082-3093.
  11. Jump up Zhang, B., Arun, G., Mao, Y.S., Lazar, Z., Hung, G., Bhattacharjee, G., Xiao, X., Booth, C.J., Wu, J., Zhang, C. et al. (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep, 2, 111-123.
  12. Jump up to: 12.0 12.1 Gutschner, T., Hammerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., Revenko, A., Arun, G., Stentrup, M., Gross, M. et al. (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res, 73, 1180-1189.
  13. Jump up to: 13.0 13.1 13.2 Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi, K.A., Grinstein, J.D., Dorrestein, P.C. and Rosenfeld, M.G. (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 147, 773-788.
  14. Jump up to: 14.0 14.1 Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. and Bartel, D.P. (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147, 1537-1550.
  15. Jump up to: 15.0 15.1 15.2 Ren, S., Liu, Y., Xu, W., Sun, Y., Lu, J., Wang, F., Wei, M., Shen, J., Hou, J., Gao, X. et al. (2013) Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol, 190, 2278-2287.
  16. Jump up to: 16.0 16.1 16.2 Li, L., Feng, T., Lian, Y., Zhang, G., Garen, A. and Song, X. (2009) Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A, 106, 12956-12961.
  17. Jump up Tseng, J.J., Hsieh, Y.T., Hsu, S.L. and Chou, M.M. (2009) Metastasis associated lung adenocarcinoma transcript 1 is up-regulated in placenta previa increta/percreta and strongly associated with trophoblast-like cell invasion in vitro. Mol Hum Reprod, 15, 725-731.
  18. Jump up to: 18.0 18.1 Ying, L., Chen, Q., Wang, Y., Zhou, Z., Huang, Y. and Qiu, F. (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst, 8, 2289-2294.
  19. Jump up Xu, C., Yang, M., Tian, J., Wang, X. and Li, Z. (2011) MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol, 39, 169-175.
  20. Jump up to: 20.0 20.1 Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K. and Akimitsu, N. (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett, 584, 4575-4580.
  21. Jump up to: 21.0 21.1 21.2 21.3 21.4 21.5 21.6 Lin, R., Maeda, S., Liu, C., Karin, M. and Edgington, T.S. (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26, 851-858.
  22. Jump up Kryger, R., Fan, L., Wilce, P.A. and Jaquet, V. (2012) MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol, 46, 629-634.
  23. Jump up to: 23.0 23.1 23.2 Tian, Y., Zhang, X., Hao, Y., Fang, Z. and He, Y. (2014) Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res.
  24. Jump up to: 24.0 24.1 Li, Z., Li, C., Liu, C., Yu, S. and Zhang, Y. (2014) Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary.
  25. Jump up Guo, F., Li, Y., Liu, Y., Wang, J. and Li, G. (2010) Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai), 42, 224-229.
  26. Jump up Zhao, Z., Chen, C., Liu, Y. and Wu, C. (2014) 17beta-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochem Biophys Res Commun, 445, 388-393.
  27. Jump up Jeffers, L.K., Duan, K., Ellies, L.G., Seaman, W.T., Burger-Calderon, R.A., Diatchenko, L.B. and Webster-Cyriaque, J. (2013) Correlation of transcription of MALAT-1, a novel noncoding RNA, with deregulated expression of tumor suppressor p53 in small DNA tumor virus models. J Cancer Ther, 4.
  28. Jump up Koshimizu, T.A., Fujiwara, Y., Sakai, N., Shibata, K. and Tsuchiya, H. (2010) Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci, 86, 455-460.
  29. Jump up to: 29.0 29.1 29.2 Schmidt, L.H., Spieker, T., Koschmieder, S., Schaffers, S., Humberg, J., Jungen, D., Bulk, E., Hascher, A., Wittmer, D., Marra, A. et al. (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol, 6, 1984-1992.
  30. Jump up Yamada, K., Kano, J., Tsunoda, H., Yoshikawa, H., Okubo, C., Ishiyama, T. and Noguchi, M. (2006) Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci, 97, 106-112.
  31. Jump up Lai, M.C., Yang, Z., Zhou, L., Zhu, Q.Q., Xie, H.Y., Zhang, F., Wu, L.M., Chen, L.M. and Zheng, S.S. (2011) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol, 29, 1810-1816.
  32. Jump up Guffanti, A., Iacono, M., Pelucchi, P., Kim, N., Solda, G., Croft, L.J., Taft, R.J., Rizzi, E., Askarian-Amiri, M., Bonnal, R.J. et al. (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics, 10, 163.

Basic Information

Transcript ID

ENST00000534336.1

Source

Gencode19

Same with

lnc-SCYL1-1:2,NONHSAT022127

Classification

intergenic

Length

8708 nt

Genomic location

chr11+:65265233..65273940

Exon number

1

Exons

65265233..65273940

Genome context

Sequence
000001 GTAAAGGACT GGGGCCCCGC AACTGGCCTC TCCTGCCCTC TTAAGCGCAG CGCCATTTTA GCAACGCAGA AGCCCGGCGC 000080
000081 CGGGAAGCCT CAGCTCGCCT GAAGGCAGGT CCCCTCTGAC GCCTCCGGGA GCCCAGGTTT CCCAGAGTCC TTGGGACGCA 000160
000161 GCGACGAGTT GTGCTGCTAT CTTAGCTGTC CTTATAGGCT GGCCATTCCA GGTGGTGGTA TTTAGATAAA ACCACTCAAA 000240
000241 CTCTGCAGTT TGGTCTTGGG GTTTGGAGGA AAGCTTTTAT TTTTCTTCCT GCTCCGGTTC AGAAGGTCTG AAGCTCATAC 000320
000321 CTAACCAGGC ATAACACAGA ATCTGCAAAA CAAAAACCCC TAAAAAAGCA GACCCAGAGC AGTGTAAACA CTTCTGGGTG 000400
000401 TGTCCCTGAC TGGCTGCCCA AGGTCTCTGT GTCTTCGGAG ACAAAGCCAT TCGCTTAGTT GGTCTACTTT AAAAGGCCAC 000480
000481 TTGAACTCGC TTTCCATGGC GATTTGCCTT GTGAGCACTT TCAGGAGAGC CTGGAAGCTG AAAAACGGTA GAAAAATTTC 000560
000561 CGTGCGGGCC GTGGGGGGCT GGCGGCAACT GGGGGGCCGC AGATCAGAGT GGGCCACTGG CAGCCAACGG CCCCCGGGGC 000640
000641 TCAGGCGGGG AGCAGCTCTG TGGTGTGGGA TTGAGGCGTT TTCCAAGAGT GGGTTTTCAC GTTTCTAAGA TTTCCCAAGC 000720
000721 AGACAGCCCG TGCTGCTCCG ATTTCTCGAA CAAAAAAGCA AAACGTGTGG CTGTCTTGGG AGCAAGTCGC AGGACTGCAA 000800
000801 GCAGTTGGGG GAGAAAGTCC GCCATTTTGC CACTTCTCAA CCGTCCCTGC AAGGCTGGGG CTCAGTTGCG TAATGGAAAG 000880
000881 TAAAGCCCTG AACTATCACA CTTTAATCTT CCTTCAAAAG GTGGTAAACT ATACCTACTG TCCCTCAAGA GAACACAAGA 000960
000961 AGTGCTTTAA GAGGTATTTT AAAAGTTCCG GGGGTTTTGT GAGGTGTTTG ATGACCCGTT TAAAATATGA TTTCCATGTT 001040
001041 TCTTTTGTCT AAAGTTTGCA GCTCAAATCT TTCCACACGC TAGTAATTTA AGTATTTCTG CATGTGTAGT TTGCATTCAA 001120
001121 GTTCCATAAG CTGTTAAGAA AAATCTAGAA AAGTAAAACT AGAACCTATT TTTAACCGAA GAACTACTTT TTGCCTCCCT 001200
001201 CACAAAGGCG GCGGAAGGTG ATCGAATTCC GGTGATGCGA GTTGTTCTCC GTCTATAAAT ACGCCTCGCC CGAGCTGTGC 001280
001281 GGTAGGCATT GAGGCAGCCA GCGCAGGGGC TTCTGCTGAG GGGGCAGGCG GAGCTTGAGG AAACCGCAGA TAAGTTTTTT 001360
001361 TCTCTTTGAA AGATAGAGAT TAATACAACT ACTTAAAAAA TATAGTCAAT AGGTTACTAA GATATTGCTT AGCGTTAAGT 001440
001441 TTTTAACGTA ATTTTAATAG CTTAAGATTT TAAGAGAAAA TATGAAGACT TAGAAGAGTA GCATGAGGAA GGAAAAGATA 001520
001521 AAAGGTTTCT AAAACATGAC GGAGGTTGAG ATGAAGCTTC TTCATGGAGT AAAAAATGTA TTTAAAAGAA AATTGAGAGA 001600
001601 AAGGACTACA GAGCCCCGAA TTAATACCAA TAGAAGGGCA ATGCTTTTAG ATTAAAATGA AGGTGACTTA AACAGCTTAA 001680
001681 AGTTTAGTTT AAAAGTTGTA GGTGATTAAA ATAATTTGAA GGCGATCTTT TAAAAAGAGA TTAAACCGAA GGTGATTAAA 001760
001761 AGACCTTGAA ATCCATGACG CAGGGAGAAT TGCGTCATTT AAAGCCTAGT TAACGCATTT ACTAAACGCA GACGAAAATG 001840
001841 GAAAGATTAA TTGGGAGTGG TAGGATGAAA CAATTTGGAG AAGATAGAAG TTTGAAGTGG AAAACTGGAA GACAGAAGTA 001920
001921 CGGGAAGGCG AAGAAAAGAA TAGAGAAGAT AGGGAAATTA GAAGATAAAA ACATACTTTT AGAAGAAAAA AGATAAATTT 002000
002001 AAACCTGAAA AGTAGGAAGC AGAAGAAAAA AGACAAGCTA GGAAACAAAA AGCTAAGGGC AAAATGTACA AACTTAGAAG 002080
002081 AAAATTGGAA GATAGAAACA AGATAGAAAA TGAAAATATT GTCAAGAGTT TCAGATAGAA AATGAAAAAC AAGCTAAGAC 002160
002161 AAGTATTGGA GAAGTATAGA AGATAGAAAA ATATAAAGCC AAAAATTGGA TAAAATAGCA CTGAAAAAAT GAGGAAATTA 002240
002241 TTGGTAACCA ATTTATTTTA AAAGCCCATC AATTTAATTT CTGGTGGTGC AGAAGTTAGA AGGTAAAGCT TGAGAAGATG 002320
002321 AGGGTGTTTA CGTAGACCAG AACCAATTTA GAAGAATACT TGAAGCTAGA AGGGGAAGTT GGTTAAAAAT CACATCAAAA 002400
002401 AGCTACTAAA AGGACTGGTG TAATTTAAAA AAAACTAAGG CAGAAGGCTT TTGGAAGAGT TAGAAGAATT TGGAAGGCCT 002480
002481 TAAATATAGT AGCTTAGTTT GAAAAATGTG AAGGACTTTC GTAACGGAAG TAATTCAAGA TCAAGAGTAA TTACCAACTT 002560
002561 AATGTTTTTG CATTGGACTT TGAGTTAAGA TTATTTTTTA AATCCTGAGG ACTAGCATTA ATTGACAGCT GACCCAGGTG 002640
002641 CTACACAGAA GTGGATTCAG TGAATCTAGG AAGACAGCAG CAGACAGGAT TCCAGGAACC AGTGTTTGAT GAAGCTAGGA 002720
002721 CTGAGGAGCA AGCGAGCAAG CAGCAGTTCG TGGTGAAGAT AGGAAAAGAG TCCAGGAGCC AGTGCGATTT GGTGAAGGAA 002800
002801 GCTAGGAAGA AGGAAGGAGC GCTAACGATT TGGTGGTGAA GCTAGGAAAA AGGATTCCAG GAAGGAGCGA GTGCAATTTG 002880
002881 GTGATGAAGG TAGCAGGCGG CTTGGCTTGG CAACCACACG GAGGAGGCGA GCAGGCGTTG TGCGTAGAGG ATCCTAGACC 002960
002961 AGCATGCCAG TGTGCCAAGG CCACAGGGAA AGCGAGTGGT TGGTAAAAAT CCGTGAGGTC GGCAATATGT TGTTTTTCTG 003040
003041 GAACTTACTT ATGGTAACCT TTTATTTATT TTCTAATATA ATGGGGGAGT TTCGTACTGA GGTGTAAAGG GATTTATATG 003120
003121 GGGACGTAGG CCGATTTCCG GGTGTTGTAG GTTTCTCTTT TTCAGGCTTA TACTCATGAA TCTTGTCTGA AGCTTTTGAG 003200
003201 GGCAGACTGC CAAGTCCTGG AGAAATAGTA GATGGCAAGT TTGTGGGTTT TTTTTTTTTA CACGAATTTG AGGAAAACCA 003280
003281 AATGAATTTG ATAGCCAAAT TGAGACAATT TCAGCAAATC TGTAAGCAGT TTGTATGTTT AGTTGGGGTA ATGAAGTATT 003360
003361 TCAGTTTTGT GAATAGATGA CCTGTTTTTA CTTCCTCACC CTGAATTCGT TTTGTAAATG TAGAGTTTGG ATGTGTAACT 003440
003441 GAGGCGGGGG GGAGTTTTCA GTATTTTTTT TTGTGGGGGT GGGGGCAAAA TATGTTTTCA GTTCTTTTTC CCTTAGGTCT 003520
003521 GTCTAGAATC CTAAAGGCAA ATGACTCAAG GTGTAACAGA AAACAAGAAA ATCCAATATC AGGATAATCA GACCACCACA 003600
003601 GGTTTACAGT TTATAGAAAC TAGAGCAGTT CTCACGTTGA GGTCTGTGGA AGAGATGTCC ATTGGAGAAA TGGCTGGTAG 003680
003681 TTACTCTTTT TTCCCCCCAC CCCCTTAATC AGACTTTAAA AGTGCTTAAC CCCTTAAACT TGTTATTTTT TACTTGAAGC 003760
003761 ATTTTGGGAT GGTCTTAACA GGGAAGAGAG AGGGTGGGGG AGAAAATGTT TTTTTCTAAG ATTTTCCACA GATGCTATAG 003840
003841 TACTATTGAC AAACTGGGTT AGAGAAGGAG TGTACCGCTG TGCTGTTGGC ACGAACACCT TCAGGGACTG GAGCTGCTTT 003920
003921 TATCCTTGGA AGAGTATTCC CAGTTGAAGC TGAAAAGTAC AGCACAGTGC AGCTTTGGTT CATATTCAGT CATCTCAGGA 004000
004001 GAACTTCAGA AGAGCTTGAG TAGGCCAAAT GTTGAAGTTA AGTTTTCCAA TAATGTGACT TCTTAAAAGT TTTATTAAAG 004080
004081 GGGAGGGGCA AATATTGGCA ATTAGTTGGC AGTGGCCTGT TACGGTTGGG ATTGGTGGGG TGGGTTTAGG TAATTGTTTA 004160
004161 GTTTATGATT GCAGATAAAC TCATGCCAGA GAACTTAAAG TCTTAGAATG GAAAAAGTAA AGAAATATCA ACTTCCAAGT 004240
004241 TGGCAAGTAA CTCCCAATGA TTTAGTTTTT TTCCCCCCAG TTTGAATTGG GAAGCTGGGG GAAGTTAAAT ATGAGCCACT 004320
004321 GGGTGTACCA GTGCATTAAT TTGGGCAAGG AAAGTGTCAT AATTTGATAC TGTATCTGTT TTCCTTCAAA GTATAGAGCT 004400
004401 TTTGGGGAAG GAAAGTATTG AACTGGGGGT TGGTCTGGCC TACTGGGCTG ACATTAACTA CAATTATGGG AAATGCAAAA 004480
004481 GTTGTTTGGA TATGGTAGTG TGTGGTTCTC TTTTGGAATT TTTTTCAGGT GATTTAATAA TAATTTAAAA CTACTATAGA 004560
004561 AACTGCAGAG CAAAGGAAGT GGCTTAATGA TCCTGAAGGG ATTTCTTCTG ATGGTAGCTT TTGTATTATC AAGTAAGATT 004640
004641 CTATTTTCAG TTGTGTGTAA GCAAGTTTTT TTTTAGTGTA GGAGAAATAC TTTTCCATTG TTTAACTGCA AAACAAGATG 004720
004721 TTAAGGTATG CTTCAAAAAT TTTGTAAATT GTTTATTTTA AACTTATCTG TTTGTAAATT GTAACTGATT AAGAATTGTG 004800
004801 ATAGTTCAGC TTGAATGTCT CTTAGAGGGT GGGCTTTTGT TGATGAGGGA GGGGAAACTT TTTTTTTTTC TATAGACTTT 004880
004881 TTTCAGATAA CATCTTCTGA GTCATAACCA GCCTGGCAGT ATGATGGCCT AGATGCAGAG AAAACAGCTC CTTGGTGAAT 004960
004961 TGATAAGTAA AGGCAGAAAA GATTATATGT CATACCTCCA TTGGGGAATA AGCATAACCC TGAGATTCTT ACTACTGATG 005040
005041 AGAACATTAT CTGCATATGC CAAAAAATTT TAAGCAAATG AAAGCTACCA ATTTAAAGTT ACGGAATCTA CCATTTTAAA 005120
005121 GTTAATTGCT TGTCAAGCTA TAACCACAAA AATAATGAAT TGATGAGAAA TACAATGAAG AGGCAATGTC CATCTCAAAA 005200
005201 TACTGCTTTT ACAAAAGCAG AATAAAAGCG AAAAGAAATG AAAATGTTAC ACTACATTAA TCCTGGAATA AAAGAAGCCG 005280
005281 AAATAAATGA GAGATGAGTT GGGATCAAGT GGATTGAGGA GGCTGTGCTG TGTGCCAATG TTTCGTTTGC CTCAGACAGG 005360
005361 TATCTCTTCG TTATCAGAAG AGTTGCTTCA TTTCATCTGG GAGCAGAAAA CAGCAGGCAG CTGTTAACAG ATAAGTTTAA 005440
005441 CTTGCATCTG CAGTATTGCA TGTTAGGGAT AAGTGCTTAT TTTTAAGAGC TGTGGAGTTC TTAAATATCA ACCATGGCAC 005520
005521 TTTCTCCTGA CCCCTTCCCT AGGGGATTTC AGGATTGAGA AATTTTTCCA TCGAGCCTTT TTAAAATTGT AGGACTTGTT 005600
005601 CCTGTGGGCT TCAGTGATGG GATAGTACAC TTCACTCAGA GGCATTTGCA TCTTTAAATA ATTTCTTAAA AGCCTCTAAA 005680
005681 GTGATCAGTG CCTTGATGCC AACTAAGGAA ATTTGTTTAG CATTGAATCT CTGAAGGCTC TATGAAAGGA ATAGCATGAT 005760
005761 GTGCTGTTAG AATCAGATGT TACTGCTAAA ATTTACATGT TGTGATGTAA ATTGTGTAGA AAACCATTAA ATCATTCAAA 005840
005841 ATAATAAACT ATTTTTATTA GAGAATGTAT ACTTTTAGAA AGCTGTCTCC TTATTTAAAT AAAATAGTGT TTGTCTGTAG 005920
005921 TTCAGTGTTG GGGCAATCTT GGGGGGGATT CTTCTCTAAT CTTTCAGAAA CTTTGTCTGC GAACACTCTT TAATGGACCA 006000
006001 GATCAGGATT TGAGCGGAAG AACGAATGTA ACTTTAAGGC AGGAAAGACA AATTTTATTC TTCATAAAGT GATGAGCATA 006080
006081 TAATAATTCC AGGCACATGG CAATAGAGGC CCTCTAAATA AGGAATAAAT AACCTCTTAG ACAGGTGGGA GATTATGATC 006160
006161 AGAGTAAAAG GTAATTACAC ATTTTATTTC CAGAAAGTCA GGGGTCTATA AATTGACAGT GATTAGAGTA ATACTTTTTC 006240
006241 ACATTTCCAA AGTTTGCATG TTAACTTTAA ATGCTTACAA TCTTAGAGTG GTAGGCAATG TTTTACACTA TTGACCTTAT 006320
006321 ATAGGGAAGG GAGGGGGTGC CTGTGGGGTT TTAAAGAATT TTCCTTTGCA GAGGCATTTC ATCCTTCATG AAGCCATTCA 006400
006401 GGATTTTGAA TTGCATATGA GTGCTTGGCT CTTCCTTCTG TTCTAGTGAG TGTATGAGAC CTTGCAGTGA GTTTATCAGC 006480
006481 ATACTCAAAA TTTTTTTCCT GGAATTTGGA GGGATGGGAG GAGGGGGTGG GGCTTACTTG TTGTAGCTTT TTTTTTTTTT 006560
006561 ACAGACTTCA CAGAGAATGC AGTTGTCTTG ACTTCAGGTC TGTCTGTTCT GTTGGCAAGT AAATGCAGTA CTGTTCTGAT 006640
006641 CCCGCTGCTA TTAGAATGCA TTGTGAAACG ACTGGAGTAT GATTAAAAGT TGTGTTCCCC AATGCTTGGA GTAGTGATTG 006720
006721 TTGAAGGAAA AAATCCAGCT GAGTGATAAA GGCTGAGTGT TGAGGAAATT TCTGCAGTTT TAAGCAGTCG TATTTGTGAT 006800
006801 TGAAGCTGAG TACATTTTGC TGGTGTATTT TTAGGTAAAA TGCTTTTTGT TCATTTCTGG TGGTGGGAGG GGACTGAAGC 006880
006881 CTTTAGTCTT TTCCAGATGC AACCTTAAAA TCAGTGACAA GAAACATTCC AAACAAGCAA CAGTCTTCAA GAAATTAAAC 006960
006961 TGGCAAGTGG AAATGTTTAA ACAGTTCAGT GATCTTTAGT GCATTGTTTA TGTGTGGGTT TCTCTCTCCC CTCCCTTGGT 007040
007041 CTTAATTCTT ACATGCAGGA ACACTCAGCA GACACACGTA TGCGAAGGGC CAGAGAAGCC AGACCCAGTA AGAAAAAATA 007120
007121 GCCTATTTAC TTTAAATAAA CCAAACATTC CATTTTAAAT GTGGGGATTG GGAACCACTA GTTCTTTCAG ATGGTATTCT 007200
007201 TCAGACTATA GAAGGAGCTT CCAGTTGAAT TCACCAGTGG ACAAAATGAG GAAAACAGGT GAACAAGCTT TTTCTGTATT 007280
007281 TACATACAAA GTCAGATCAG TTATGGGACA ATAGTATTGA ATAGATTTCA GCTTTATGCT GGAGTAACTG GCATGTGAGC 007360
007361 AAACTGTGTT GGCGTGGGGG TGGAGGGGTG AGGTGGGCGC TAAGCCTTTT TTTAAGATTT TTCAGGTACC CCTCACTAAA 007440
007441 GGCACCGAAG GCTTAAAGTA GGACAACCAT GGAGCCTTCC TGTGGCAGGA GAGACAACAA AGCGCTATTA TCCTAAGGTC 007520
007521 AAGAGAAGTG TCAGCCTCAC CTGATTTTTA TTAGTAATGA GGACTTGCCT CAACTCCCTC TTTCTGGAGT GAAGCATCCG 007600
007601 AAGGAATGCT TGAAGTACCC CTGGGCTTCT CTTAACATTT AAGCAAGCTG TTTTTATAGC AGCTCTTAAT AATAAAGCCC 007680
007681 AAATCTCAAG CGGTGCTTGA AGGGGAGGGA AAGGGGGAAA GCGGGCAACC ACTTTTCCCT AGCTTTTCCA GAAGCCTGTT 007760
007761 AAAAGCAAGG TCTCCCCACA AGCAACTTCT CTGCCACATC GCCACCCCGT GCCTTTTGAT CTAGCACAGA CCCTTCACCC 007840
007841 CTCACCTCGA TGCAGCCAGT AGCTTGGATC CTTGTGGGCA TGATCCATAA TCGGTTTCAA GGTAACGATG GTGTCGAGGT 007920
007921 CTTTGGTGGG TTGAACTATG TTAGAAAAGG CCATTAATTT GCCTGCAAAT TGTTAACAGA AGGGTATTAA AACCACAGCT 008000
008001 AAGTAGCTCT ATTATAATAC TTATCCAGTG ACTAAAACCA ACTTAAACCA GTAAGTGGAG AAATAACATG TTCAAGAACT 008080
008081 GTAATGCTGG GTGGGAACAT GTAACTTGTA GACTGGAGAA GATAGGCATT TGAGTGGCTG AGAGGGCTTT TGGGTGGGAA 008160
008161 TGCAAAAATT CTCTGCTAAG ACTTTTTCAG GTGAACATAA CAGACTTGGC CAAGCTAGCA TCTTAGCGGA AGCTGATCTC 008240
008241 CAATGCTCTT CAGTAGGGTC ATGAAGGTTT TTCTTTTCCT GAGAAAACAA CACGTATTGT TTTCTCAGGT TTTGCTTTTT 008320
008321 GGCCTTTTTC TAGCTTAAAA AAAAAAAAAG CAAAAGATGC TGGTGGTTGG CACTCCTGGT TTCCAGGACG GGGTTCAAAT 008400
008401 CCCTGCGGCG TCTTTGCTTT GACTACTAAT CTGTCTTCAG GACTCTTTCT GTATTTCTCC TTTTCTCTGC AGGTGCTAGT 008480
008481 TCTTGGAGTT TTGGGGAGGT GGGAGGTAAC AGCACAATAT CTTTGAACTA TATACATCCT TGATGTATAA TTTGTCAGGA 008560
008561 GCTTGACTTG ATTGTATATT CATATTTACA CGAGAACCTA ATATAACTGC CTTGTCTTTT TCAGGTAATA GCCTGCAGCT 008640
008641 GGTGTTTTGA GAAGCCCTAC TGCTGAAAAC TTAACAATTT TGTGTAATAA AAATGGAGAA GCTCTAAA
[back to top]