Hemichannel and junctional properties of connexin 50.

Derek L Beahm, James E Hall
Author Information
  1. Derek L Beahm: Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA.

Abstract

Lens fiber connexins, cx50 and cx46 (alpha3 and alpha8), belong to a small subset of connexins that can form functional hemichannels in nonjunctional membranes. Knockout of either cx50 or cx46 results in a cataract, so the properties of both connexins are likely essential for proper physiological functioning of the lens. Although portions of the sequences of these two connexins are nearly identical, their hemichannel properties are quite different. Cx50 hemichannels are much more sensitive to extracellular acidification than cx46 hemichannels and differ from cx46 hemichannels both in steady-state and kinetic properties. Comparison of the two branches of the cx50 hemichannel G-V curve with the junctional G-V curve suggests that cx50 gap junctions gate with positive relative polarity. The histidine-modifying reagent, diethyl pyrocarbonate, reversibly blocks cx50 hemichannel currents but not cx46 hemichannel currents. Because cx46 and cx50 have very similar amino acid sequences, one might expect that replacing the two histidines unique to the third transmembrane region of cx50 with the corresponding cx46 residues would produce mutants more closely resembling cx46. In fact this does not happen. Instead the mutant cx50H161N does not form detectable hemichannels but forms gap junctions indistinguishable from wild type. Cx50H176Q is oocyte lethal, and the double mutant, cx50H61N/H176Q, neither forms hemichannels nor kills oocytes.

References

J Gen Physiol. 1990 Oct;96(4):757-75 [PMID: 2258715]
Proc Natl Acad Sci U S A. 1979 Dec;76(12):6221-5 [PMID: 392515]
J Cell Biol. 1991 Nov;115(4):1077-89 [PMID: 1659572]
J Gen Physiol. 1991 Dec;98(6):1085-103 [PMID: 1783895]
J Mol Biol. 1992 Feb 20;223(4):929-48 [PMID: 1371548]
Circ Res. 1992 Jun;70(6):1233-43 [PMID: 1315637]
J Cell Biol. 1992 Jun;117(6):1299-310 [PMID: 1318884]
J Physiol. 1992 Jan;445:201-30 [PMID: 1380084]
Biophys J. 1992 Oct;63(4):942-53 [PMID: 1384745]
Mol Biol Cell. 1993 Jan;4(1):7-20 [PMID: 8382974]
Curr Eye Res. 1985 Apr;4(4):421-30 [PMID: 4017633]
Biophys J. 1985 Sep;48(3):423-34 [PMID: 3876116]
J Physiol. 1988 Apr;398:507-21 [PMID: 3392681]
EMBO J. 1988 Oct;7(10):2967-75 [PMID: 2460334]
J Cell Biol. 1988 Nov;107(5):1817-24 [PMID: 2460469]
Biophys J. 1990 Oct;58(4):939-45 [PMID: 2248997]
J Cell Sci. 1990 Sep;97 ( Pt 1):109-17 [PMID: 2175311]
Biophys J. 1993 May;64(5):1422-33 [PMID: 8391867]
J Gen Physiol. 1993 Jul;102(1):59-74 [PMID: 7690837]
Biochem J. 1994 Apr 1;299 ( Pt 1):177-81 [PMID: 8166637]
Circ Res. 1994 Jun;74(6):1058-64 [PMID: 8187275]
J Cell Biol. 1994 May;125(4):879-92 [PMID: 8188753]
Nature. 1994 Sep 15;371(6494):208-9 [PMID: 8078580]
Invest Ophthalmol Vis Sci. 1994 Sep;35(10):3747-58 [PMID: 8088962]
Biophys J. 1994 Nov;67(5):1816-22 [PMID: 7858120]
Biophys J. 1995 May;68(5):1796-803 [PMID: 7612821]
Mol Biol Cell. 1995 Apr;6(4):459-70 [PMID: 7542941]
Biophys J. 1996 Mar;70(3):1294-302 [PMID: 8785285]
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836-41 [PMID: 8650179]
Physiol Rev. 1997 Jan;77(1):21-50 [PMID: 9016299]
Cell. 1997 Dec 12;91(6):833-43 [PMID: 9413992]
Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1280-5 [PMID: 9620092]
Biophys J. 1998 Nov;75(5):2323-31 [PMID: 9788927]
J Biol Chem. 1998 Nov 20;273(47):31131-7 [PMID: 9813016]
J Cell Biol. 1998 Nov 2;143(3):815-25 [PMID: 9813099]
Pflugers Arch. 1999 Feb;437(3):345-53 [PMID: 9914390]
J Gen Physiol. 1999 Apr;113(4):507-24 [PMID: 10102933]
Biophys J. 1979 Jan;25(1):181-201 [PMID: 262384]
J Membr Biol. 2000 Jan 1;173(1):39-46 [PMID: 10612690]
J Biol Chem. 2000 Mar 10;275(10):6777-82 [PMID: 10702234]
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2556-61 [PMID: 10706639]
Methods Enzymol. 1977;47:431-42 [PMID: 22021]
Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8410-4 [PMID: 1717979]

Grants

  1. EY 05661/NEI NIH HHS

MeSH Term

Amino Acid Sequence
Animals
Calcium
Cell Membrane
Cloning, Molecular
Connexins
DNA Mutational Analysis
Electrophysiology
Eye Proteins
Lens, Crystalline
Molecular Sequence Data
Mutation
Oocytes
RNA, Complementary
Sequence Homology, Amino Acid
Time Factors
Transcription, Genetic
Xenopus laevis

Chemicals

Connexins
Eye Proteins
RNA, Complementary
GJA3 protein, human
connexin 50
Calcium

Word Cloud

Similar Articles

Cited By