rhs genes are potential markers for multilocus sequence typing of Escherichia coli O157:H7 strains.

K Liu, S J Knabel, E G Dudley
Author Information
  1. K Liu: Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.

Abstract

DNA sequence-based molecular subtyping methods such as multilocus sequence typing (MLST) are commonly used to generate phylogenetic inferences for monomorphic pathogens. The development of an effective MLST scheme for subtyping Escherichia coli O157:H7 has been hindered in the past due to the lack of sequence variation found within analyzed housekeeping and virulence genes. A recent study suggested that rhs genes are under strong positive selection pressure, and therefore in this study we analyzed these genes within a diverse collection of E. coli O157:H7 strains for sequence variability. Eighteen O157:H7 strains from lineages I and II and 15 O157:H7 strains from eight clades were included. Examination of these rhs genes revealed 44 polymorphic loci (PL) and 10 sequence types (STs) among the 18 lineage strains and 280 PL and 12 STs among the 15 clade strains. Phylogenetic analysis using rhs genes generally grouped strains according to their known lineage and clade classifications. These findings also suggested that O157:H7 strains from clades 6 and 8 fall into lineage I/II and that strains of clades 1, 2, 3, and 4 fall into lineage I. Additionally, unique markers were found in rhsA and rhsJ that might be used to define clade 8 and clade 6. Therefore, rhs genes may be useful markers for phylogenetic analysis of E. coli O157:H7.

Associated Data

GENBANK | FJ839695; FJ839696; FJ839697; FJ839698; FJ839699; FJ839700; FJ839701; FJ839702; FJ839703; FJ839704; FJ839705; FJ839706; FJ839707; FJ839708; FJ839709; FJ839710; FJ839711; FJ839712; FJ839713; FJ839714; FJ839715; FJ839716; FJ839717; FJ839718; FJ839719; FJ839720; FJ839721; FJ839722; FJ839723; FJ839724; FJ839725; FJ839726; FJ839727; FJ839728; FJ839729; FJ839730; FJ839731; FJ839732; FJ839733; FJ839734; FJ839735; FJ839736; FJ839737; FJ839738; FJ839739; FJ839740; FJ839741; FJ839742; FJ839743; FJ839744; FJ839745; FJ839746; FJ839747; FJ839748; FJ839749; FJ839750; FJ839751; FJ839752; FJ839753; FJ839754; FJ839755; FJ839756; FJ839757; FJ839758; FJ839759; FJ839760; FJ839761; FJ839762; FJ839763; FJ839764; FJ839765; FJ839766; FJ839767; FJ839768; FJ839769; FJ839770; FJ839771; FJ839772; FJ839773; FJ839774; FJ839775; FJ839776; FJ839777; FJ839778; FJ839779; FJ839780; FJ839781; FJ839782; FJ839783; FJ839784; FJ839785; FJ839786; FJ839787; FJ839788; FJ839789; FJ839790; FJ839791; FJ839792; FJ839793; FJ839794; FJ839795; FJ839796; FJ839797; FJ839798; FJ839799; FJ839800; FJ839801; FJ839802; FJ839803; FJ839804; FJ839805; FJ839806; FJ839807; FJ839808; FJ839809; FJ839810; FJ839811; FJ839812; FJ839813; FJ839814; FJ839815; FJ839816; FJ871402; FJ871403; FJ871404; FJ871405; FJ871406

References

  1. Infect Immun. 2005 Mar;73(3):1735-43 [PMID: 15731074]
  2. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5 [PMID: 9501229]
  3. Mol Microbiol. 2006 Feb;59(3):907-22 [PMID: 16420360]
  4. Emerg Infect Dis. 2007 Dec;13(12):1908-11 [PMID: 18258044]
  5. MMWR Morb Mortal Wkly Rep. 2006 Sep 29;55(38):1045-6 [PMID: 17008868]
  6. Appl Environ Microbiol. 2004 Nov;70(11):6846-54 [PMID: 15528552]
  7. Ann Clin Microbiol Antimicrob. 2003 Dec 10;2:12 [PMID: 14664722]
  8. N Engl J Med. 1983 Mar 24;308(12):681-5 [PMID: 6338386]
  9. Forensic Sci Int. 2007 May 24;168(2-3):183-99 [PMID: 16934953]
  10. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  11. Appl Environ Microbiol. 2004 Feb;70(2):913-20 [PMID: 14766571]
  12. J Infect Dis. 1987 Apr;155(4):806-9 [PMID: 3546523]
  13. J Mol Biol. 1984 Jul 25;177(1):1-18 [PMID: 6086936]
  14. J Clin Microbiol. 1993 Sep;31(9):2483-8 [PMID: 8408571]
  15. Genome Biol. 2009;10(5):R56 [PMID: 19463166]
  16. Microbiol Immunol. 1999;43(8):803-6 [PMID: 10524799]
  17. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8713-8 [PMID: 19439656]
  18. Appl Environ Microbiol. 2003 Aug;69(8):4683-8 [PMID: 12902258]
  19. Annu Rev Microbiol. 2008;62:53-70 [PMID: 18785837]
  20. J Clin Microbiol. 2008 Jun;46(6):2070-3 [PMID: 18400915]
  21. Mol Microbiol. 1994 Jun;12(6):865-71 [PMID: 7934896]
  22. Epidemiol Infect. 1994 Oct;113(2):199-207 [PMID: 7925659]
  23. BMC Genomics. 2007 May 16;8:121 [PMID: 17506902]
  24. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2999-3003 [PMID: 10725380]
  25. DNA Res. 2001 Feb 28;8(1):11-22 [PMID: 11258796]
  26. J Food Prot. 2004 Dec;67(12):2839-49 [PMID: 15633699]
  27. Appl Environ Microbiol. 2008 Nov;74(21):6606-15 [PMID: 18791027]
  28. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4868-73 [PMID: 18332430]
  29. J Clin Microbiol. 2003 Feb;41(2):675-9 [PMID: 12574266]
  30. J Food Prot. 2004 Apr;67(4):651-7 [PMID: 15083714]
  31. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13288-93 [PMID: 10557313]
  32. Appl Environ Microbiol. 2008 Jul;74(14):4314-23 [PMID: 18487402]
  33. J Clin Microbiol. 1991 May;29(5):985-9 [PMID: 2056066]
  34. Bioinformatics. 2005 Aug 15;21(16):3422-3 [PMID: 15976072]
  35. Genome Res. 2006 Jun;16(6):757-67 [PMID: 16606700]
  36. J Clin Microbiol. 1995 Dec;33(12):3347-8 [PMID: 8586736]
  37. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  38. Genome Res. 2007 Sep;17(9):1336-43 [PMID: 17675366]
  39. Microbiology (Reading). 2008 Nov;154(Pt 11):3518-3528 [PMID: 18957604]
  40. Food Microbiol. 2009 Aug;26(5):514-9 [PMID: 19465248]
  41. Epidemiol Rev. 1996;18(1):29-51 [PMID: 8877329]
  42. Microbiology (Reading). 2006 Apr;152(Pt 4):989-1000 [PMID: 16549663]
  43. Bioinformatics. 2000 Oct;16(10):944-5 [PMID: 11120685]

MeSH Term

Bacterial Typing Techniques
Cluster Analysis
DNA Fingerprinting
DNA, Bacterial
Escherichia coli O157
Genes, Bacterial
Molecular Sequence Data
Phylogeny
Polymorphism, Genetic
Sequence Analysis, DNA
Sequence Homology

Chemicals

DNA, Bacterial