Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using unlabeled AA and several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d(2)-AA and 10, 10, 13,13-d(4)-AA. The primary KIE for steady-state cyclooxygenase catalysis, (D)k(cat), ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes slow formation of a pentadienyl AA radical and rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of lipoxygenase indicates very different mechanism of hydrogen transfer.
Biochem J. 1961 Feb;78(2):253-62
[PMID:
16748874]
J Biol Chem. 1995 May 5;270(18):10503-8
[PMID:
7737984]
Biochemistry. 1996 Oct 1;35(39):12882-92
[PMID:
8841132]
Arch Biochem Biophys. 2010 Jan 1;493(1):103-24
[PMID:
19728984]
J Biol Chem. 1967 Nov 25;242(22):5336-43
[PMID:
6070851]
Biochemistry. 2007 Apr 3;46(13):3975-89
[PMID:
17355126]
Biochemistry. 1995 Oct 31;34(43):14077-92
[PMID:
7578005]
J Biol Chem. 1999 Jul 30;274(31):21695-700
[PMID:
10419480]
J Am Chem Soc. 2001 Apr 18;123(15):3609-10
[PMID:
11472139]
Prostaglandins Other Lipid Mediat. 2000 Aug;62(3):231-54
[PMID:
10963792]
FEBS Lett. 1990 May 21;264(2):165-7
[PMID:
2358063]
Biochemistry. 2002 Dec 31;41(52):15451-8
[PMID:
12501173]
J Biol Chem. 1975 Jul 10;250(13):5243-6
[PMID:
238982]
J Am Chem Soc. 2003 Jul 30;125(30):8988-9
[PMID:
15369335]
Mol Pharmacol. 1991 Nov;40(5):833-7
[PMID:
1658613]
Biochemistry. 1999 Sep 21;38(38):12218-28
[PMID:
10493789]
J Biol Chem. 1994 Feb 18;269(7):5085-91
[PMID:
8106487]
J Biol Chem. 1990 Nov 25;265(33):20073-6
[PMID:
2122967]
J Biol Chem. 1992 Sep 5;267(25):17753-9
[PMID:
1325448]
Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9738-43
[PMID:
9707545]
Chem Rev. 2003 Jun;103(6):2239-304
[PMID:
12797830]
J Biol Chem. 1987 Aug 5;262(22):10524-31
[PMID:
3038886]
Nature. 2000 May 4;405(6782):97-101
[PMID:
10811226]
J Biol Chem. 1998 Feb 13;273(7):3888-94
[PMID:
9461572]
J Biol Chem. 1967 Nov 25;242(22):5329-35
[PMID:
6070850]
Biochemistry. 1994 Apr 5;33(13):4001-7
[PMID:
7908225]
Org Lett. 2004 Feb 5;6(3):349-52
[PMID:
14748590]
Chem Rev. 2006 Aug;106(8):3302-16
[PMID:
16895329]
Eur J Biochem. 1988 Jan 15;171(1-2):313-20
[PMID:
2828053]
Biochemistry. 2008 Jul 8;47(27):7295-303
[PMID:
18547056]
Phytochemistry. 2009 Sep;70(13-14):1504-10
[PMID:
19767040]
J Am Chem Soc. 2002 Sep 11;124(36):10785-96
[PMID:
12207535]
Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1323-31
[PMID:
16873120]
Anal Biochem. 1998 Nov 15;264(2):165-71
[PMID:
9866678]
Biochemistry. 1989 May 30;28(11):4847-53
[PMID:
2765513]