On the organizational dynamics of the genetic code.

Zhang Zhang, Jun Yu
Author Information
  1. Zhang Zhang: Plant Stress Genomics Research Center, Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Abstract

The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides-adenine, thymine, guanine and cytosine-according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a large collection of 917 prokaryotic genome sequences, and associate the usages with its intrinsic structure and classification schemes as well as amino acid physicochemical properties. Our results show that the algebraic representation of the code is structurally equivalent to a content-centric organization of the code and that codon and amino acid usages under different classification schemes were correlated closely with GC content, implying a set of rules governing composition dynamics across a wide variety of prokaryotic genome sequences. These results also indicate that codons and amino acids are not randomly allocated in the code, where the six-fold degenerate codons and their amino acids have important balancing roles for error minimization. Therefore, the content-centric code is of great usefulness in deciphering its hitherto unknown regularities as well as the dynamics of nucleotide, codon, and amino acid compositions.

References

  1. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4396-401 [PMID: 10200273]
  2. Nucleic Acids Res. 1988 Feb 25;16(4):1640 [PMID: 3347508]
  3. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4442-7 [PMID: 15764708]
  4. IUBMB Life. 2009 Feb;61(2):99-111 [PMID: 19117371]
  5. Acta Biotheor. 2006;54(1):27-42 [PMID: 16823609]
  6. J Theor Biol. 2005 Apr 21;233(4):527-32 [PMID: 15748913]
  7. J Mol Evol. 1978 Aug 2;11(3):211-24 [PMID: 691072]
  8. Nature. 2005 Jan 27;433(7024):377-81 [PMID: 15674282]
  9. J Mol Evol. 1995 May;40(5):541-4 [PMID: 7783228]
  10. Physiologie. 1986 Apr-Jun;23(2):139-43 [PMID: 3088617]
  11. Genomics Proteomics Bioinformatics. 2007 Feb;5(1):1-6 [PMID: 17572358]
  12. J Mol Evol. 2004 Nov;59(5):598-605 [PMID: 15693616]
  13. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  14. Nature. 2002 Dec 19-26;420(6917):841-4 [PMID: 12490955]
  15. Mol Biol Evol. 2000 Apr;17(4):511-8 [PMID: 10742043]
  16. Biochem Biophys Res Commun. 2003 Jun 27;306(2):408-15 [PMID: 12804578]
  17. Biosystems. 2009 Nov;98(2):105-14 [PMID: 19643160]
  18. Genomics Proteomics Bioinformatics. 2007 Dec;5(3-4):143-51 [PMID: 18267295]
  19. J Mol Evol. 1998 Sep;47(3):238-48 [PMID: 9732450]
  20. J Mol Evol. 1999 Jul;49(1):36-43 [PMID: 10368432]
  21. Biosystems. 1979 Mar;11(1):19-28 [PMID: 465655]
  22. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  23. Gene. 2000 Dec 30;261(1):63-9 [PMID: 11164038]
  24. J Mol Biol. 1968 Dec;38(3):367-79 [PMID: 4887876]
  25. Proc Natl Acad Sci U S A. 1975 May;72(5):1909-12 [PMID: 1057181]
  26. Biosystems. 2000 Aug-Sep;57(3):147-61 [PMID: 11084237]
  27. Experientia. 1950 Jun 15;6(6):201-9 [PMID: 15421335]
  28. Biosystems. 1999 Dec;54(1-2):47-64 [PMID: 10658837]
  29. J Mol Evol. 1995 Dec;41(6):712-6 [PMID: 8587115]
  30. J Theor Biol. 2000 Aug 21;205(4):659-61 [PMID: 10931760]
  31. Orig Life. 1980 Sep;10(3):265-70 [PMID: 7413187]
  32. Nature. 1973 Nov 2;246(5427):22-6 [PMID: 4585842]
  33. Genome Biol. 2001;2(4):RESEARCH0010 [PMID: 11305938]
  34. Math Biosci. 2009 Sep;221(1):60-76 [PMID: 19607845]
  35. J Mol Evol. 1991 Nov;33(5):412-7 [PMID: 1960738]
  36. Nat Struct Biol. 1996 Oct;3(10):842-8 [PMID: 8836100]
  37. Cell. 2000 Jun 9;101(6):569-72 [PMID: 10892641]
  38. Biosystems. 1989;22(3):177-87 [PMID: 2650752]
  39. J Cell Physiol Suppl. 1951 Jul;38(Suppl. 1):41-59 [PMID: 14861276]
  40. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933-8 [PMID: 9653118]
  41. J Mol Evol. 2005 Jul;61(1):54-64 [PMID: 16059752]
  42. J Mol Evol. 1985;22(3):272-7 [PMID: 3935806]
  43. J Theor Biol. 1994 Oct 21;170(4):359-65 [PMID: 7996862]

MeSH Term

Amino Acids
Archaea
Bacteria
Base Composition
Evolution, Molecular
Genetic Code
Genome, Archaeal
Genome, Bacterial
Nucleotides

Chemicals

Amino Acids
Nucleotides

Word Cloud

Similar Articles

Cited By