Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

Kylee J Veazey, Michael C Golding
Author Information
  1. Kylee J Veazey: College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.

Abstract

Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.

References

  1. J Biol Chem. 2004 Mar 5;279(10):9424-31 [PMID: 14672929]
  2. Genes Dev. 2011 Mar 15;25(6):594-607 [PMID: 21357675]
  3. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):12955-61 [PMID: 17670940]
  4. Biochem Biophys Res Commun. 2008 Sep 12;374(1):106-10 [PMID: 18602371]
  5. J Clin Invest. 2010 Sep;120(9):3340-9 [PMID: 20679726]
  6. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  7. Development. 2005 Apr;132(7):1649-61 [PMID: 15753215]
  8. RNA. 2010 Feb;16(2):450-61 [PMID: 20040593]
  9. BMC Dev Biol. 2005 Dec 03;5:27 [PMID: 16324220]
  10. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  11. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  12. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  13. Development. 2004 Aug;131(15):3727-35 [PMID: 15240554]
  14. Mol Cell. 2004 Nov 19;16(4):655-61 [PMID: 15546624]
  15. Genes Dev. 1998 Jul 1;12(13):2048-60 [PMID: 9649508]
  16. Development. 2011 Sep;138(17):3667-78 [PMID: 21775415]
  17. Stem Cells. 2010 Jun;28(6):1030-8 [PMID: 20506138]
  18. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):525-30 [PMID: 17194760]
  19. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424-8 [PMID: 8378314]
  20. Science. 2007 Jan 5;315(5808):97-100 [PMID: 17204650]
  21. J Mol Neurosci. 2009 Mar;37(3):238-53 [PMID: 18607772]
  22. Development. 2009 Mar;136(5):701-13 [PMID: 19201946]
  23. Dev Cell. 2004 Aug;7(2):155-64 [PMID: 15296713]
  24. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13344-9 [PMID: 14581617]
  25. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  26. Stem Cells. 2009 Jan;27(1):49-58 [PMID: 18832594]
  27. Science. 1998 Dec 11;282(5396):2072-5 [PMID: 9851926]
  28. Nat Struct Mol Biol. 2004 Sep;11(9):822-9 [PMID: 15300239]
  29. BMC Dev Biol. 2007 Mar 06;7:14 [PMID: 17341302]
  30. Hum Mol Genet. 2008 Jun 1;17(11):1653-65 [PMID: 18287259]
  31. Plant Biotechnol J. 2008 Aug;6(6):609-18 [PMID: 18433420]
  32. Nat Struct Mol Biol. 2004 Jul;11(7):650-5 [PMID: 15195148]
  33. Nature. 1988 Dec 15;336(6200):684-7 [PMID: 3143916]
  34. Int J Dev Biol. 2006;50(7):627-35 [PMID: 16892176]
  35. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  36. Biol Reprod. 2009 Aug;81(2):362-70 [PMID: 19403927]
  37. Hum Mol Genet. 2010 Jan 1;19(1):36-51 [PMID: 19805400]
  38. Biomed Biochim Acta. 1983;42(11-12):S263-7 [PMID: 6689547]
  39. Biotechniques. 2006 Feb;40(2):173-7 [PMID: 16526406]
  40. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8 [PMID: 6950406]
  41. Mol Cell Biol. 2000 Oct;20(20):7419-26 [PMID: 11003639]
  42. J Cell Biol. 1995 Jul;130(2):393-405 [PMID: 7615639]
  43. Nat Struct Mol Biol. 2004 Sep;11(9):816-21 [PMID: 15300240]
  44. J Embryol Exp Morphol. 1975 Jul;33(4):991-1001 [PMID: 1176885]
  45. Cell Stem Cell. 2010 May 7;6(5):457-67 [PMID: 20452320]
  46. Development. 2005 May;132(9):2093-102 [PMID: 15788452]
  47. Development. 1990 Nov;110(3):815-21 [PMID: 2088722]

Grants

  1. R03 AA020129/NIAAA NIH HHS
  2. 1R03AA020129-01/NIAAA NIH HHS

MeSH Term

Animals
Biomarkers
Blastocyst
Cell Differentiation
Cell Lineage
Embryonic Stem Cells
Endoderm
Gene Expression Regulation, Developmental
Genes
Mice
RNA, Messenger
Real-Time Polymerase Chain Reaction
Stem Cells

Chemicals

Biomarkers
RNA, Messenger