On the molecular mechanism of GC content variation among eubacterial genomes.

Hao Wu, Zhang Zhang, Songnian Hu, Jun Yu
Author Information
  1. Hao Wu: James D Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China.

Abstract

BACKGROUND: As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes.
RESULTS: Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group.
CONCLUSION: Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years.

References

  1. J Mol Evol. 1996 Sep;43(3):216-23 [PMID: 8703087]
  2. Cell. 2003 Apr 18;113(2):183-93 [PMID: 12705867]
  3. FEBS Lett. 2004 Aug 27;573(1-3):73-7 [PMID: 15327978]
  4. J Mol Evol. 1997 Jun;44(6):632-6 [PMID: 9169555]
  5. Science. 1970 Nov 20;170(3960):822-5 [PMID: 5473414]
  6. Hereditas. 1998;128(2):173-8 [PMID: 9687237]
  7. Nature. 1958 Jul 12;182(4628):111-2 [PMID: 13566202]
  8. EMBO Rep. 2005 Dec;6(12):1208-13 [PMID: 16200051]
  9. J Mol Evol. 1985;22(4):363-5 [PMID: 3936938]
  10. Mol Biol Evol. 1995 Nov;12(6):1124-31 [PMID: 8524045]
  11. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2653-7 [PMID: 3357886]
  12. Genome Res. 2008 Mar;18(3):442-8 [PMID: 18218977]
  13. Cell. 2002 Mar 8;108(5):583-6 [PMID: 11893328]
  14. PLoS Genet. 2010 Sep 09;6(9):e1001107 [PMID: 20838593]
  15. Trends Microbiol. 1999 Jan;7(1):29-36 [PMID: 10068995]
  16. Genetics. 2003 Jul;164(3):843-54 [PMID: 12871898]
  17. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 [PMID: 6760125]
  18. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1585-9 [PMID: 18216261]
  19. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3160-5 [PMID: 14973198]
  20. Nat Genet. 2003 Apr;33(4):514-7 [PMID: 12612582]
  21. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  22. J Mol Evol. 2002 Sep;55(3):260-4 [PMID: 12187379]
  23. Antimicrob Agents Chemother. 2008 Oct;52(10):3810-3 [PMID: 18663021]
  24. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274-81 [PMID: 5328724]
  25. BMC Microbiol. 2007 Mar 12;7:17 [PMID: 17352799]
  26. Mol Microbiol. 2003 Nov;50(3):1031-42 [PMID: 14617159]
  27. J Biol Chem. 1984 Mar 10;259(5):2956-60 [PMID: 6321488]
  28. Biochem Biophys Res Commun. 2006 Aug 18;347(1):1-3 [PMID: 16815305]
  29. Annu Rev Genet. 1976;10:135-56 [PMID: 797306]
  30. Proc Biol Sci. 2005 Jul 7;272(1570):1393-8 [PMID: 16006323]
  31. Cold Spring Harb Symp Quant Biol. 2000;65:11-9 [PMID: 12760016]
  32. Nature. 1987 Feb 19-25;325(6106):728-30 [PMID: 2434856]
  33. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  34. Nature. 1998 Jul 2;394(6688):69-72 [PMID: 9665128]
  35. Genome Res. 2002 Jun;12(6):851-6 [PMID: 12045139]
  36. Genome Res. 2002 May;12(5):689-700 [PMID: 11997336]
  37. Biochem Biophys Res Commun. 2007 Apr 27;356(1):20-5 [PMID: 17336933]
  38. Biol Direct. 2010 Nov 08;5:63 [PMID: 21059261]
  39. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):581-6 [PMID: 12522265]
  40. Mol Biol Evol. 2009 Jan;26(1):131-42 [PMID: 18974087]
  41. Proc Biol Sci. 2001 Mar 7;268(1466):493-7 [PMID: 11296861]
  42. PLoS Genet. 2010 Sep 09;6(9):e1001115 [PMID: 20838599]
  43. Genome Biol. 2001;2(4):RESEARCH0010 [PMID: 11305938]
  44. J Bacteriol. 2002 Jun;184(12):3287-95 [PMID: 12029045]
  45. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  46. Nucleic Acids Res. 2005 May 10;33(8):2603-14 [PMID: 15886391]
  47. Science. 1967 Sep 8;157(3793):1196-7 [PMID: 6038693]
  48. Gene. 2003 Oct 23;317(1-2):149-55 [PMID: 14604803]
  49. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83 [PMID: 19001264]
  50. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4380-5 [PMID: 8633075]
  51. J Mol Evol. 2009 Jan;68(1):90-6 [PMID: 19123013]
  52. Nucleic Acids Res. 1989 Jul 11;17(13):5029-39 [PMID: 2762118]
  53. Nat Rev Genet. 2002 Nov;3(11):850-61 [PMID: 12415315]
  54. FEMS Microbiol Rev. 2007 Nov;31(6):637-56 [PMID: 17883408]
  55. Proc Natl Acad Sci U S A. 1962 Apr 15;48:582-92 [PMID: 13918161]
  56. J Mol Evol. 2003 Mar;56(3):362-70 [PMID: 12612839]
  57. Nature. 1978 Jul 27;274(5669):317-21 [PMID: 97562]
  58. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):203-11 [PMID: 17531796]

MeSH Term

Adaptation, Biological
Bacteria
Bacterial Proteins
Base Composition
DNA Polymerase III
DNA Replication
DNA, Bacterial
DNA-Directed DNA Polymerase
Ecosystem
Genes, Bacterial
Genetic Variation
Genome Size
Genome, Bacterial
Isoenzymes
Mutagenesis
Phylogeny
Temperature

Chemicals

Bacterial Proteins
DNA, Bacterial
Isoenzymes
DNA polymerase III, alpha subunit
PolC protein, bacteria
DNA Polymerase III
DNA-Directed DNA Polymerase

Word Cloud

Similar Articles

Cited By