RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development.

Meng How Tan, Kin Fai Au, Arielle L Yablonovitch, Andrea E Wills, Jason Chuang, Julie C Baker, Wing Hung Wong, Jin Billy Li
Author Information
  1. Meng How Tan: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. menghow.tan@gmail.com

Abstract

The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are transcribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms. Furthermore, we used Cufflinks to reconstruct transcripts from our RNA-seq data and found that ∼13.5% of the final contigs are derived from novel transcribed regions, both within introns and in intergenic regions. We then developed a filtering pipeline to separate protein-coding transcripts from noncoding RNAs and identified a confident set of 6686 noncoding transcripts in 3859 genomic loci. Since the current reference genome, XenTro3, consists of hundreds of scaffolds instead of full chromosomes, we also performed de novo reconstruction of the transcriptome using Trinity and uncovered hundreds of transcripts that are missing from the genome. Collectively, our data will not only aid in completing the assembly of the Xenopus tropicalis genome but will also serve as a valuable resource for gene discovery and for unraveling the fundamental mechanisms of vertebrate embryogenesis.

Associated Data

GEO | GSE37452

References

  1. Nat Genet. 2008 Dec;40(12):1413-5 [PMID: 18978789]
  2. Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5 [PMID: 21062808]
  3. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  4. Nature. 1991 Jan 10;349(6305):132-8 [PMID: 1846030]
  5. BMC Genomics. 2010 Jun 23;11:399 [PMID: 20573213]
  6. Development. 2002 Dec;129(24):5743-52 [PMID: 12421713]
  7. Science. 2004 Dec 24;306(5705):2242-6 [PMID: 15539566]
  8. Cell. 2007 Jun 29;129(7):1311-23 [PMID: 17604720]
  9. Nucleic Acids Res. 2012 Jan;40(Database issue):D210-5 [PMID: 22135294]
  10. RNA Biol. 2009 Nov-Dec;6(5):526-30 [PMID: 19829058]
  11. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  12. Science. 2010 Apr 30;328(5978):633-6 [PMID: 20431018]
  13. Nucleic Acids Res. 2009 Oct;37(18):e123 [PMID: 19620212]
  14. PLoS Genet. 2006 Jun;2(6):e91 [PMID: 16789825]
  15. Nat Genet. 2006 Oct;38(10):1151-8 [PMID: 16951679]
  16. Annu Rev Cell Dev Biol. 1997;13:611-67 [PMID: 9442883]
  17. Genome Res. 2011 Feb;21(2):342-8 [PMID: 21177968]
  18. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  19. Dev Dyn. 2002 Dec;225(4):499-510 [PMID: 12454926]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Bioinformatics. 2009 Apr 15;25(8):1026-32 [PMID: 19244387]
  22. Dev Biol. 2011 Sep 15;357(2):478-91 [PMID: 21741375]
  23. Nature. 1989 May 25;339(6222):280-6 [PMID: 2566918]
  24. Cell. 2011 Dec 23;147(7):1537-50 [PMID: 22196729]
  25. Genome Res. 2006 Jun;16(6):796-803 [PMID: 16672307]
  26. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W645-50 [PMID: 16912992]
  27. PLoS Genet. 2008 Feb 29;4(2):e1000001 [PMID: 18454200]
  28. Nucleic Acids Res. 2010 Aug;38(14):4570-8 [PMID: 20371516]
  29. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  30. Dev Biol. 2004 Jul 15;271(2):498-516 [PMID: 15223350]
  31. Nature. 1977 Dec 22-29;270(5639):739-41 [PMID: 22819]
  32. Dev Dyn. 2002 Dec;225(4):384-91 [PMID: 12454917]
  33. Bioinformatics. 2008 Oct 15;24(20):2395-6 [PMID: 18697769]
  34. Semin Cell Dev Biol. 2006 Feb;17(1):146-53 [PMID: 16427790]
  35. Genome Res. 2004 Oct;14(10B):2121-7 [PMID: 15489334]
  36. Nat Rev Mol Cell Biol. 2006 Apr;7(4):296-302 [PMID: 16482093]
  37. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  38. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  39. Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5 [PMID: 22102590]
  40. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D46-55 [PMID: 16381912]
  41. Dev Cell. 2011 Apr 19;20(4):483-96 [PMID: 21497761]
  42. Genome Res. 2011 Aug;21(8):1328-38 [PMID: 21555364]
  43. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  44. Cell. 2005 Jun 17;121(6):859-72 [PMID: 15960974]
  45. Development. 2006 May;133(9):1703-14 [PMID: 16554360]
  46. Cell. 2011 Apr 29;145(3):383-397 [PMID: 21529712]
  47. BMC Genomics. 2007 May 16;8:118 [PMID: 17506875]
  48. Nature. 1989 May 25;339(6222):275-80 [PMID: 2566917]
  49. Dev Biol. 2011 Jun 1;354(1):1-8 [PMID: 21458440]
  50. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 [PMID: 22127870]
  51. Nature. 1958 Jul 5;182(4627):64-5 [PMID: 13566187]
  52. Nature. 2011 Mar 24;471(7339):473-9 [PMID: 21179090]
  53. Nucleic Acids Res. 2009 Aug;37(14):4873-86 [PMID: 19546110]
  54. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  55. Science. 2010 Dec 24;330(6012):1775-87 [PMID: 21177976]
  56. Nature. 2009 Mar 12;458(7235):223-7 [PMID: 19182780]

Grants

  1. R01HG005717/NHGRI NIH HHS
  2. 5T32GM008294-23/NIGMS NIH HHS
  3. T32 GM008294/NIGMS NIH HHS
  4. R01HD057970/NICHD NIH HHS
  5. R01 HG005717/NHGRI NIH HHS
  6. R01 HD057970/NICHD NIH HHS

MeSH Term

Animals
Ecthyma, Contagious
Embryo, Nonmammalian
Gene Expression Regulation, Developmental
Introns
Larva
Physical Chromosome Mapping
RNA Splicing
RNA, Untranslated
Sequence Alignment
Sequence Analysis, RNA
Transcriptome
Xenopus

Chemicals

RNA, Untranslated