The pendulum model for genome compositional dynamics: from the four nucleotides to the twenty amino acids.

Zhang Zhang, Jun Yu
Author Information
  1. Zhang Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

Abstract

The genetic code serves as one of the natural links for life's two conceptual frameworks-the informational and operational tracks-bridging the nucleotide sequence of DNA and RNA to the amino acid sequence of protein and thus its structure and function. On the informational track, DNA and its four building blocks have four basic variables: order, length, GC and purine contents; the latter two exhibit unique characteristics in prokaryotic genomes where protein-coding sequences dominate. Bridging the two tracks, tRNAs and their aminoacyl tRNA synthases that interpret each codon-nucleotide triplet, together with ribosomes, form a complex machinery that translates genetic information encoded on the messenger RNAs into proteins. On the operational track, proteins are selected in a context of cellular and organismal functions constantly. The principle of such a functional selection is to minimize the damage caused by sequence alteration in a seemingly random fashion at the nucleotide level and its function-altering consequence at the protein level; the principle also suggests that there must be complex yet sophisticated mechanisms to protect molecular interactions and cellular processes for cells and organisms from the damage in addition to both immediate or short-term eliminations and long-term selections. The two-century study of selection at species and population levels has been leading a way to understand rules of inheritance and evolution at molecular levels along the informational track, while ribogenomics, epigenomics and other operationally-defined omics (such as the metabolite-centric metabolomics) have been ushering biologists into the new millennium along the operational track.

References

  1. Genomics Proteomics Bioinformatics. 2007 Feb;5(1):1-6 [PMID: 17572358]
  2. Genomics Proteomics Bioinformatics. 2007 Dec;5(3-4):143-51 [PMID: 18267295]
  3. Genomics Proteomics Bioinformatics. 2012 Jun;10(3):123-6 [PMID: 22917184]
  4. Nucleic Acids Res. 2008 Nov;36(19):6228-36 [PMID: 18829715]
  5. Proc Natl Acad Sci U S A. 1968 Jul;60(3):921-2 [PMID: 4970114]
  6. Mol Biol Evol. 1996 May;13(5):660-5 [PMID: 8676740]
  7. Genomics Proteomics Bioinformatics. 2012 Feb;10(1):4-10 [PMID: 22449396]
  8. Nature. 2012 Jul 19;487(7407):370-4 [PMID: 22722833]
  9. PLoS One. 2011;6(8):e23219 [PMID: 21886783]
  10. PLoS One. 2010 Apr 12;5(4):e10144 [PMID: 20419085]
  11. Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70 [PMID: 19023283]
  12. BMC Bioinformatics. 2012 Mar 22;13:43 [PMID: 22435713]
  13. Genomics. 2007 Aug;90(2):186-94 [PMID: 17532183]
  14. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):203-11 [PMID: 17531796]
  15. Nat Genet. 2003 Apr;33(4):514-7 [PMID: 12612582]
  16. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  17. Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):21-9 [PMID: 21641559]
  18. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  19. Genomics Proteomics Bioinformatics. 2012 Apr;10(2):82-93 [PMID: 22768982]
  20. Front Genet. 2011 Dec 26;2:93 [PMID: 22303387]
  21. Genomics Proteomics Bioinformatics. 2012 Apr;10(2):55-7 [PMID: 22768979]
  22. Genomics Proteomics Bioinformatics. 2005 Feb;3(1):3-4 [PMID: 16144517]
  23. Res Microbiol. 2010 Dec;161(10):838-46 [PMID: 20868744]
  24. Biol Direct. 2012 Jan 10;7:2 [PMID: 22230424]
  25. BMC Evol Biol. 2009 Mar 11;9:55 [PMID: 19284596]
  26. PLoS One. 2011 Mar 17;6(3):e17945 [PMID: 21437290]
  27. Am J Hum Genet. 2003 Sep;73(3):688-92 [PMID: 12881777]
  28. Genome Res. 2002 Jun;12(6):851-6 [PMID: 12045139]
  29. Genome Res. 2002 May;12(5):689-700 [PMID: 11997336]
  30. Biochem Biophys Res Commun. 2007 Apr 27;356(1):20-5 [PMID: 17336933]
  31. Biol Direct. 2010 Nov 08;5:63 [PMID: 21059261]
  32. Genomics Proteomics Bioinformatics. 2012 Feb;10(1):11-22 [PMID: 22449397]
  33. Genomics Proteomics Bioinformatics. 2012 Apr;10(2):74-81 [PMID: 22768981]
  34. Experientia. 1950 Jun 15;6(6):201-9 [PMID: 15421335]
  35. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]
  36. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):186-96 [PMID: 23084774]
  37. Genomics Proteomics Bioinformatics. 2006 Aug;4(3):173-81 [PMID: 17127215]
  38. Genome Res. 2002 Aug;12(8):1185-9 [PMID: 12176926]
  39. Genomics Proteomics Bioinformatics. 2010 Jun;8(2):92-102 [PMID: 20691394]
  40. J Biol Chem. 1950 Sep;186(1):37-50 [PMID: 14778802]
  41. Genomics Proteomics Bioinformatics. 2010 Dec;8(4):211-28 [PMID: 21382590]

MeSH Term

Amino Acid Sequence
Amino Acids
Base Sequence
Codon
DNA
Evolution, Molecular
Genetic Code
Genome
Models, Genetic
Nucleotides
Open Reading Frames
Proteins
RNA
RNA, Transfer

Chemicals

Amino Acids
Codon
Nucleotides
Proteins
RNA
DNA
RNA, Transfer

Word Cloud

Similar Articles

Cited By