Stanley Kimani, Goutam Ghosh, Ashwini Ghogare, Benjamin Rudshteyn, Dorota Bartusik, Tayyaba Hasan, Alexander Greer
PEGylated chlorin e(6) photosensitizers were synthesized with tri(ethylene glycol) attached at the ester bond(s) for a 1:1 conjugate at the 17(3)-position, a 2:1 conjugate at the 15(2)- and 17(3)-positions, and a 3:1 conjugate at the 13(1)-, 15(2)-, and 17(3)-positions. These chlorin sensitizers were studied for hydrolytic stability and solubility, as well as ovarian OVCAR-5 cancer cell uptake, localization, and phototoxicity. Increasing numbers of the PEG groups in the mono-, di-, and tri-PEG chlorin conjugates increased the water solubility and sensitivity to hydrolysis and uptake into the ovarian cancer cells. The PEG chlorin conjugates accumulated in the cytoplasm and mitrochondria, but not in lysosomes. Higher phototoxicity was roughly correlated with higher numbers of PEG groups, with the tri-PEG chlorin conjugate showing the best overall ovarian cancer cell photokilling of the series. Singlet oxygen lifetimes, solvent deuteration, and the effects of additives azide ion and d-mannitol were examined to help clarify the photokilling mechanisms. A Type-II (singlet oxygen) photosensitized mechanism is suggested for the di- and tri-PEG chlorin conjugates; however, a more complicated process based in part on a Type-I (radicals or radical ions) mechanism is suggested for the parent chlorin e(6) and the mono-PEG chlorin conjugate.
Lasers Surg Med. 1989;9(2):90-101
[PMID:
2523995]
J Org Chem. 2012 May 18;77(10):4557-65
[PMID:
22546013]
J Phys Chem B. 2005 May 12;109(18):8570-3
[PMID:
16852012]
Free Radic Biol Med. 2012 Dec 1;53(11):2062-71
[PMID:
23044264]
J Phys Chem B. 2012 Jun 21;116(24):7334-41
[PMID:
22587534]
J Natl Cancer Inst. 1988 May 4;80(5):330-6
[PMID:
2965763]
Cancer Res. 2001 Oct 1;61(19):7155-62
[PMID:
11585749]
J Photochem Photobiol B. 2006 Jul 3;84(1):56-63
[PMID:
16520059]
Bioconjug Chem. 2007 Mar-Apr;18(2):494-9
[PMID:
17279724]
Bioconjug Chem. 2004 Nov-Dec;15(6):1364-75
[PMID:
15546204]
Photochem Photobiol. 2006 Sep-Oct;82(5):1178-86
[PMID:
16740059]
Biochim Biophys Acta. 2007 Nov;1768(11):2748-56
[PMID:
17692283]
J Am Chem Soc. 2010 Jun 16;132(23):8098-105
[PMID:
20491478]
Inorg Chem. 1996 Dec 4;35(25):7325-7338
[PMID:
11666925]
J Control Release. 2011 Nov 7;155(3):367-75
[PMID:
21600248]
Chem Rev. 2011 Dec 14;111(12):7941-80
[PMID:
21981343]
J Am Chem Soc. 2012 Jun 13;134(23):9820-6
[PMID:
22594303]
Lasers Surg Med. 2011 Sep;43(7):565-74
[PMID:
22057484]
Bioconjug Chem. 2012 Oct 17;23(10):2071-7
[PMID:
22988941]
Photochem Photobiol. 2000 Oct;72(4):533-40
[PMID:
11045726]
J Control Release. 2008 Sep 24;130(3):238-45
[PMID:
18657874]
J Org Chem. 2009 Dec 18;74(24):9388-98
[PMID:
19928755]
ACS Chem Biol. 2008 Apr 18;3(4):203-6
[PMID:
18422301]
J Org Chem. 2010 Aug 20;75(16):5549-57
[PMID:
20704430]
Biochim Biophys Acta. 1987 Jan 26;896(2):181-6
[PMID:
3801467]
J Control Release. 2001 Jul 6;74(1-3):269-73
[PMID:
11489506]
J Med Chem. 2004 Nov 4;47(23):5601-4
[PMID:
15509156]
Photochem Photobiol. 2007 Sep-Oct;83(5):1006-15
[PMID:
17880493]
J Med Chem. 2008 Jul 24;51(14):4300-5
[PMID:
18578475]
Bioorg Med Chem. 2003 Apr 17;11(8):1643-52
[PMID:
12659750]
J Org Chem. 2006 Mar 3;71(5):1949-60
[PMID:
16496980]