Does the genetic code have a eukaryotic origin?

Zhang Zhang, Jun Yu
Author Information
  1. Zhang Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core "house-keeping" functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables-GC and purine contents-of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern-the symmetric pattern-where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes.

References

  1. Genomics Proteomics Bioinformatics. 2007 Feb;5(1):1-6 [PMID: 17572358]
  2. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  3. Genome Biol. 2011;12(4):R38 [PMID: 21489296]
  4. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824-8 [PMID: 6167991]
  5. Prog Biophys Mol Biol. 1972;24:107-23 [PMID: 4566650]
  6. BMC Bioinformatics. 2012 Mar 22;13:43 [PMID: 22435713]
  7. Genomics. 2007 Aug;90(2):186-94 [PMID: 17532183]
  8. PLoS Genet. 2010 Sep 09;6(9):e1001107 [PMID: 20838593]
  9. Biochem J. 1981 Oct 1;199(1):31-41 [PMID: 7337711]
  10. Phys Life Rev. 2010 Sep;7(3):362-76 [PMID: 20558115]
  11. Nat Genet. 2003 Apr;33(4):514-7 [PMID: 12612582]
  12. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  13. Adv Enzymol Relat Areas Mol Biol. 1978;47:45-148 [PMID: 364941]
  14. Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):21-9 [PMID: 21641559]
  15. Protein Eng. 1987 Aug-Sep;1(4):289-94 [PMID: 3508279]
  16. Genomics Proteomics Bioinformatics. 2012 Apr;10(2):55-7 [PMID: 22768979]
  17. Nature. 1978 Oct 19;275(5681):673-4 [PMID: 703834]
  18. J Mol Biol. 1988 Apr 5;200(3):513-22 [PMID: 3398047]
  19. Nucleic Acids Res. 2006 Feb 09;34(3):905-16 [PMID: 16473848]
  20. Nature. 1979 Feb 8;277(5696):491-2 [PMID: 763335]
  21. Res Microbiol. 2010 Dec;161(10):838-46 [PMID: 20868744]
  22. Biol Direct. 2012 Jan 10;7:2 [PMID: 22230424]
  23. Genomics Proteomics Bioinformatics. 2007 Dec;5(3-4):143-51 [PMID: 18267295]
  24. J Mol Evol. 1989 Oct;29(4):288-93 [PMID: 2514270]
  25. Proteins. 1987;2(2):130-52 [PMID: 3447171]
  26. J Mol Biol. 1983 Dec 25;171(4):479-88 [PMID: 6663622]
  27. Mol Biol Evol. 2008 Mar;25(3):568-79 [PMID: 18178545]
  28. BMC Evol Biol. 2009 Mar 11;9:55 [PMID: 19284596]
  29. Science. 1985 Aug 30;229(4716):834-8 [PMID: 4023714]
  30. PLoS One. 2011 Mar 17;6(3):e17945 [PMID: 21437290]
  31. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  32. Genomics Proteomics Bioinformatics. 2012 Jun;10(3):123-6 [PMID: 22917184]
  33. Nat Struct Mol Biol. 2008 Oct;15(10):1007-14 [PMID: 18836497]
  34. Nucleic Acids Res. 2008 Nov;36(19):6228-36 [PMID: 18829715]
  35. J Mol Biol. 1968 Dec;38(3):367-79 [PMID: 4887876]
  36. Anal Biochem. 1982 Jul 15;124(1):201-8 [PMID: 7125223]
  37. Am J Hum Genet. 2003 Sep;73(3):688-92 [PMID: 12881777]
  38. Genome Res. 2002 Jun;12(6):851-6 [PMID: 12045139]
  39. Nucleic Acids Res. 2007;35(16):5593-609 [PMID: 17704131]
  40. Genome Res. 2002 May;12(5):689-700 [PMID: 11997336]
  41. Biochem Biophys Res Commun. 2007 Apr 27;356(1):20-5 [PMID: 17336933]
  42. PLoS One. 2008 Feb 20;3(2):e1622 [PMID: 18286179]
  43. Trends Biochem Sci. 1999 Jun;24(6):241-7 [PMID: 10366854]
  44. Biol Direct. 2010 Nov 08;5:63 [PMID: 21059261]
  45. Biophys J. 1985 Jan;47(1):61-70 [PMID: 3978191]
  46. Genomics Proteomics Bioinformatics. 2012 Feb;10(1):11-22 [PMID: 22449397]
  47. Genomics Proteomics Bioinformatics. 2012 Apr;10(2):74-81 [PMID: 22768981]
  48. FEBS Lett. 2010 Jan 21;584(2):325-33 [PMID: 19944694]
  49. Biochemistry. 1978 Oct 3;17(20):4277-85 [PMID: 708713]
  50. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]
  51. Arch Biochem Biophys. 1974 Apr 2;161(2):665-70 [PMID: 4839053]
  52. Microbiol Mol Biol Rev. 2003 Dec;67(4):550-73 [PMID: 14665676]
  53. J Theor Biol. 1968 Nov;21(2):170-201 [PMID: 5700434]
  54. Biochemistry. 1981 Feb 17;20(4):849-55 [PMID: 7213619]
  55. J Electron Microsc (Tokyo). 2012;61(6):423-31 [PMID: 23024290]
  56. Genomics Proteomics Bioinformatics. 2012 Feb;10(1):4-10 [PMID: 22449396]
  57. Annu Rev Biochem. 2005;74:179-98 [PMID: 15952885]
  58. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11295-300 [PMID: 9736730]
  59. PLoS Genet. 2010 Sep 09;6(9):e1001115 [PMID: 20838599]
  60. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):186-96 [PMID: 23084774]
  61. Genomics Proteomics Bioinformatics. 2006 Aug;4(3):173-81 [PMID: 17127215]
  62. J Theor Biol. 1975 Mar;50(1):167-83 [PMID: 1127956]
  63. Science. 1974 Sep 6;185(4154):862-4 [PMID: 4843792]
  64. J Mol Biol. 1984 Oct 15;179(1):125-42 [PMID: 6502707]
  65. Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36 [PMID: 10704480]
  66. Genome Biol Evol. 2012;4(1):24-7 [PMID: 22113795]
  67. PLoS One. 2010 Apr 12;5(4):e10144 [PMID: 20419085]
  68. Biochimie. 2007 Oct;89(10):1276-88 [PMID: 17889982]
  69. Biol Direct. 2012 Jun 11;7:13 [PMID: 22515485]
  70. DNA Res. 2012 Jun;19(3):245-58 [PMID: 22378766]
  71. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):175-80 [PMID: 23084772]
  72. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):203-11 [PMID: 17531796]
  73. Genome Res. 2002 Aug;12(8):1185-9 [PMID: 12176926]
  74. Genomics Proteomics Bioinformatics. 2010 Jun;8(2):92-102 [PMID: 20691394]
  75. Genomics Proteomics Bioinformatics. 2010 Dec;8(4):211-28 [PMID: 21382590]
  76. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1083-6 [PMID: 6928661]

MeSH Term

Amino Acids
Base Composition
Codon
DNA
Eukaryota
Evolution, Molecular
Genetic Code
Introns
Purines
RNA
RNA Splice Sites
RNA Splicing
Valine

Chemicals

Amino Acids
Codon
Purines
RNA Splice Sites
RNA
DNA
Valine

Word Cloud

Similar Articles

Cited By