Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function.

Yang Eric Guo, Kasandra J Riley, Akiko Iwasaki, Joan A Steitz
Author Information
  1. Yang Eric Guo: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA.
  2. Kasandra J Riley: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.
  3. Akiko Iwasaki: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
  4. Joan A Steitz: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA. Electronic address: joan.steitz@yale.edu.

Abstract

In marmoset T cells transformed by Herpesvirus saimiri (HVS), a viral U-rich noncoding (nc) RNA, HSUR 1, specifically mediates degradation of host microRNA-27 (miR-27). High-throughput sequencing of RNA after crosslinking immunoprecipitation (HITS-CLIP) identified mRNAs targeted by miR-27 as enriched in the T cell receptor (TCR) signaling pathway, including GRB2. Accordingly, transfection of miR-27 into human T cells attenuates TCR-induced activation of mitogen-activated protein kinases (MAPKs) and induction of CD69. MiR-27 also robustly regulates SEMA7A and IFN-γ, key modulators and effectors of T cell function. Knockdown or ectopic expression of HSUR 1 alters levels of these proteins in virally transformed cells. Two other T-lymphotropic γ-herpesviruses, AlHV-1 and OvHV-2, do not produce a noncoding RNA to downregulate miR-27 but instead encode homologs of miR-27 target genes. Thus, oncogenic γ-herpesviruses have evolved diverse strategies to converge on common targets in host T cells.

Associated Data

GENBANK | GSE55185

References

  1. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3): [PMID: 20719877]
  2. Immunol Rev. 2009 Nov;232(1):150-9 [PMID: 19909362]
  3. Cell. 2010 Sep 3;142(5):749-61 [PMID: 20727575]
  4. Vet J. 2009 Mar;179(3):324-35 [PMID: 18760944]
  5. PLoS Pathog. 2012 Feb;8(2):e1002510 [PMID: 22346748]
  6. J Leukoc Biol. 2004 Feb;75(2):163-89 [PMID: 14525967]
  7. Nucleic Acids Res. 1992 Apr 11;20(7):1810 [PMID: 1315960]
  8. Curr Protoc Mol Biol. 2010 Jan;Chapter 19:Unit 19.10.1-21 [PMID: 20069535]
  9. Methods Mol Biol. 2010;667:205-14 [PMID: 20827536]
  10. Curr Protoc Immunol. 2010 Apr;Chapter 11:Unit 11.3.1-11 [PMID: 20376841]
  11. EMBO J. 1986 Jul;5(7):1625-32 [PMID: 2427336]
  12. Mol Cell. 2010 Feb 12;37(3):429-37 [PMID: 20159561]
  13. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  14. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  15. Annu Rev Microbiol. 2010;64:123-41 [PMID: 20477536]
  16. Mol Cell Biol. 2004 May;24(10):4522-33 [PMID: 15121869]
  17. Adv Cancer Res. 2005;93:91-128 [PMID: 15797445]
  18. Nat Immunol. 2001 Jan;2(1):29-36 [PMID: 11135575]
  19. Nature. 2009 Jul 23;460(7254):479-86 [PMID: 19536157]
  20. Scand J Immunol. 2002 Sep;56(3):270-5 [PMID: 12193228]
  21. Vet Res. 2011 Aug 22;42:95 [PMID: 21859474]
  22. Immunity. 2010 Jun 25;32(6):828-39 [PMID: 20605486]
  23. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6391-5 [PMID: 6273869]
  24. Science. 2010 Jun 18;328(5985):1563-6 [PMID: 20558719]
  25. CSH Protoc. 2006 Jun 01;2006(1): [PMID: 22485716]
  26. Nat Genet. 2011 Mar 20;43(4):371-8 [PMID: 21423181]
  27. Nat Biotechnol. 2011 Jun 01;29(7):607-14 [PMID: 21633356]
  28. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):279-84 [PMID: 22184245]
  29. Genome Res. 2005 Oct;15(10):1451-5 [PMID: 16169926]
  30. Nat Rev Immunol. 2013 Sep;13(9):666-78 [PMID: 23907446]
  31. Genome Biol. 2010;11(8):R86 [PMID: 20738864]
  32. RNA. 2007 Oct;13(10):1787-92 [PMID: 17720879]
  33. RNA. 2008 Jun;14(6):1244-53 [PMID: 18430891]
  34. Cell. 1999 Oct 1;99(1):71-80 [PMID: 10520995]
  35. Curr Biol. 2005 May 24;15(10):974-9 [PMID: 15916956]
  36. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  37. Cell. 1988 Aug 26;54(5):599-607 [PMID: 2842058]
  38. J Immunol. 1998 Mar 1;160(5):2042-5 [PMID: 9498738]
  39. Cell. 2011 Jul 22;146(2):247-61 [PMID: 21784246]
  40. J Virol. 2006 Jan;80(1):192-200 [PMID: 16352543]
  41. J Virol. 1989 Aug;63(8):3307-14 [PMID: 2545905]
  42. Immunity. 1998 Apr;8(4):473-82 [PMID: 9586637]
  43. Immunol Rev. 2003 Apr;192:131-42 [PMID: 12670401]
  44. Nucleic Acids Res. 1989 Feb 11;17(3):1258 [PMID: 2537954]
  45. J Immunol. 2010 May 1;184(9):4990-9 [PMID: 20304822]
  46. Nat Rev Drug Discov. 2003 Jul;2(7):554-65 [PMID: 12815381]
  47. J Virol. 2009 Oct;83(19):9618-29 [PMID: 19640997]
  48. Nat Immunol. 2008 Jan;9(1):17-23 [PMID: 18087252]
  49. Immunity. 2006 May;24(5):591-600 [PMID: 16713976]
  50. Vet Immunol Immunopathol. 2010 Aug 15;136(3-4):284-91 [PMID: 20413164]
  51. Blood. 2012 Dec 20;120(26):5188-98 [PMID: 23077289]
  52. J Exp Med. 1986 Sep 1;164(3):926-31 [PMID: 3018122]

Grants

  1. P01 CA016038/NCI NIH HHS
  2. R01 AI054359/NIAID NIH HHS
  3. R01 AI062428/NIAID NIH HHS
  4. CA16038/NCI NIH HHS

MeSH Term

Animals
Antigens, CD
Antigens, Differentiation, T-Lymphocyte
Base Sequence
Callithrix
Enzyme Activation
GPI-Linked Proteins
GRB2 Adaptor Protein
Gene Expression Regulation
HEK293 Cells
Herpesvirus 2, Saimiriine
High-Throughput Nucleotide Sequencing
Host-Pathogen Interactions
Humans
Immunoprecipitation
Interferon-gamma
Jurkat Cells
Lectins, C-Type
Lymphocyte Activation
MicroRNAs
Mitogen-Activated Protein Kinases
Molecular Sequence Data
RNA Stability
RNA, Untranslated
RNA, Viral
Receptors, Antigen, T-Cell
Semaphorins
Sequence Analysis, RNA
Signal Transduction
T-Lymphocytes
Time Factors
Transfection

Chemicals

Antigens, CD
Antigens, Differentiation, T-Lymphocyte
CD69 antigen
GPI-Linked Proteins
GRB2 Adaptor Protein
GRB2 protein, human
IFNG protein, human
Lectins, C-Type
MIRN27 microRNA, human
MicroRNAs
RNA, Untranslated
RNA, Viral
Receptors, Antigen, T-Cell
SEMA7A protein, human
Semaphorins
Interferon-gamma
Mitogen-Activated Protein Kinases