Origins and functional evolution of Y chromosomes across mammals.

Diego Cortez, Ray Marin, Deborah Toledo-Flores, Laure Froidevaux, Angélica Liechti, Paul D Waters, Frank Grützner, Henrik Kaessmann
Author Information
  1. Diego Cortez: 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
  2. Ray Marin: 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
  3. Deborah Toledo-Flores: The Robinson Research Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
  4. Laure Froidevaux: Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
  5. Angélica Liechti: Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
  6. Paul D Waters: School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales 2052, Australia.
  7. Frank Grützner: The Robinson Research Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
  8. Henrik Kaessmann: 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.

Abstract

Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.

Associated Data

GEO | GSE50747
SRA | SRP026469; SRP029216

References

  1. PLoS Biol. 2010 Sep 07;8(9): [PMID: 20838655]
  2. Genetics. 2008 Oct;180(2):1131-6 [PMID: 18791248]
  3. PLoS One. 2012;7(10):e45488 [PMID: 23094017]
  4. Genome Res. 2008 Jun;18(6):965-73 [PMID: 18463302]
  5. Nature. 2010 Jan 28;463(7280):536-9 [PMID: 20072128]
  6. BMC Genomics. 2012 May 14;13:183 [PMID: 22583744]
  7. PLoS Genet. 2009 Jul;5(7):e1000568 [PMID: 19609352]
  8. Nature. 2012 Feb 22;483(7387):82-6 [PMID: 22367542]
  9. Nat Rev Genet. 2013 Feb;14(2):113-24 [PMID: 23329112]
  10. Science. 2012 Jul 20;337(6092):341-5 [PMID: 22822149]
  11. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1563-72 [PMID: 11127901]
  12. Genome Res. 2013 Sep;23(9):1486-95 [PMID: 23788650]
  13. Hum Mol Genet. 1995 May;4(5):859-68 [PMID: 7633446]
  14. Dev Dyn. 1999 Dec;216(4-5):411-9 [PMID: 10633860]
  15. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  16. Hum Mol Genet. 1998 Oct;7(11):1725-37 [PMID: 9736774]
  17. Genome Biol. 2009;10(8):R83 [PMID: 19682367]
  18. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  19. Gigascience. 2012 Dec 27;1(1):18 [PMID: 23587118]
  20. Nature. 2010 Apr 1;464(7289):757-62 [PMID: 20360741]
  21. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  22. Nat Rev Genet. 2006 Feb;7(2):98-108 [PMID: 16418745]
  23. PLoS One. 2012;7(8):e43997 [PMID: 22952844]
  24. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618-22 [PMID: 281711]
  25. Nature. 2014 Jan 30;505(7485):635-40 [PMID: 24463510]
  26. Nature. 2009 Sep 10;461(7261):267-71 [PMID: 19710650]
  27. Genome Res. 2012 Mar;22(3):498-507 [PMID: 22128133]
  28. BMC Evol Biol. 2010 Jul 13;10:210 [PMID: 20626897]
  29. Nature. 2003 Jun 19;423(6942):825-37 [PMID: 12815422]
  30. Genome Biol. 2013 Mar 25;14(3):R26 [PMID: 23531366]
  31. Mamm Genome. 2003 Jul;14(7):437-47 [PMID: 12925892]
  32. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  33. Hum Mol Genet. 1994 Jun;3(6):873-8 [PMID: 7524912]
  34. Genome Res. 2012 Sep;22(9):1775-89 [PMID: 22955988]
  35. Biotechniques. 1999 Sep;27(3):608-13 [PMID: 10489619]
  36. Cell Rep. 2013 Jun 27;3(6):2179-90 [PMID: 23791531]
  37. Cell. 1993 Dec 31;75(7):1287-95 [PMID: 8269511]
  38. Nature. 2011 Oct 19;478(7369):343-8 [PMID: 22012392]
  39. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  40. Nature. 2004 Dec 16;432(7019):913-7 [PMID: 15502814]
  41. Genomics. 2004 Jan;83(1):140-7 [PMID: 14667817]
  42. Science. 1999 Oct 29;286(5441):964-7 [PMID: 10542153]
  43. Hum Mol Genet. 1998 Oct;7(11):1713-24 [PMID: 9736773]
  44. Bioinformatics. 2008 Mar 1;24(5):713-4 [PMID: 18227114]
  45. Annu Rev Genomics Hum Genet. 2009;10:333-54 [PMID: 19630566]
  46. Bioessays. 2011 Dec;33(12):938-45 [PMID: 22006834]
  47. Nature. 2005 Mar 17;434(7031):325-37 [PMID: 15772651]
  48. Mol Cell Biol. 1992 Jan;12(1):164-71 [PMID: 1729596]
  49. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  50. PLoS Biol. 2009 May 5;7(5):e1000112 [PMID: 19468303]
  51. Trends Genet. 2004 Jul;20(7):287-90 [PMID: 15219392]
  52. Cell. 1989 Mar 10;56(5):765-70 [PMID: 2493989]
  53. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  54. Nature. 1990 Jul 19;346(6281):245-50 [PMID: 2374589]
  55. Mol Biol Evol. 1998 May;15(5):568-73 [PMID: 9580986]
  56. Genome Res. 2013 Nov;23(11):1894-907 [PMID: 23921660]
  57. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13225-30 [PMID: 11687639]
  58. Genome Biol Evol. 2010 Jul 12;2:347-57 [PMID: 20624739]
  59. Genome Biol. 2005;6(12):R102 [PMID: 16356265]
  60. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  61. PLoS Biol. 2009 Nov;7(11):e1000244 [PMID: 19918361]
  62. J Mol Evol. 2006 Jan;62(1):66-72 [PMID: 16320115]
  63. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  64. Mol Cells. 2000 Oct 31;10(5):512-8 [PMID: 11101141]
  65. Trends Genet. 2004 Dec;20(12):631-9 [PMID: 15522459]
  66. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2955-9 [PMID: 22323585]
  67. PLoS Biol. 2008 Apr 1;6(4):e80 [PMID: 18384235]
  68. J Mol Evol. 2009 Feb;68(2):134-44 [PMID: 19142680]
  69. Bioessays. 2012 Dec;34(12):1035-44 [PMID: 23055411]
  70. Nature. 2008 May 8;453(7192):175-83 [PMID: 18464734]
  71. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62 [PMID: 16000407]
  72. Development. 2010 Dec;137(23):3921-30 [PMID: 21062860]
  73. Dev Dyn. 2013 Apr;242(4):380-7 [PMID: 23390004]
  74. Genome Res. 1999 Sep;9(9):868-77 [PMID: 10508846]
  75. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16899-903 [PMID: 12477932]
  76. J Clin Invest. 2011 Jan;121(1):328-41 [PMID: 21183788]
  77. Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90 [PMID: 22086963]
  78. Nature. 1991 Dec 12;354(6353):483-6 [PMID: 1684224]
  79. Chromosome Res. 2009;17(7):917-26 [PMID: 19789986]
  80. PLoS Biol. 2012;10(5):e1001328 [PMID: 22615540]
  81. Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12373-8 [PMID: 23842086]
  82. Chromosome Res. 2012 Jan;20(1):127-38 [PMID: 22215486]
  83. Reprod Fertil Dev. 2009;21(8):964-75 [PMID: 19874720]
  84. J Mol Evol. 2002 Jul;55(1):92-103 [PMID: 12165846]
  85. Genome Biol. 2007;8(11):R243 [PMID: 18021405]
  86. Mol Biol Evol. 2010 Nov;27(11):2446-50 [PMID: 20534706]
  87. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8207-11 [PMID: 22570496]
  88. Genomics. 2008 Nov;92(5):329-38 [PMID: 18674610]
  89. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  90. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  91. Mol Biol Evol. 2013 Apr;30(4):806-10 [PMID: 23329687]
  92. Nature. 1993 Aug 19;364(6439):713-5 [PMID: 8355783]

MeSH Term

Animals
Birds
Conserved Sequence
Evolution, Molecular
Female
Gene Dosage
Genes, sry
Genomics
High-Throughput Nucleotide Sequencing
Male
Mammals
Marsupialia
Receptors, Peptide
Receptors, Transforming Growth Factor beta
Selection, Genetic
Sex Chromosomes
Spatio-Temporal Analysis
Spermatogenesis
Testis
Transcriptome
Y Chromosome

Chemicals

Receptors, Peptide
Receptors, Transforming Growth Factor beta
anti-Mullerian hormone receptor