Protein patterns of black fungi under simulated Mars-like conditions.

Kristina Zakharova, Gorji Marzban, Jean-Pierre de Vera, Andreas Lorek, Katja Sterflinger
Author Information
  1. Kristina Zakharova: University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, A - 1190 Vienna, Austria.
  2. Gorji Marzban: University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, A - 1190 Vienna, Austria.
  3. Jean-Pierre de Vera: German Aerospace Center, Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin, Germany.
  4. Andreas Lorek: German Aerospace Center, Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin, Germany.
  5. Katja Sterflinger: University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, A - 1190 Vienna, Austria.

Abstract

Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

References

Orig Life Evol Biosph. 2007 Apr;37(2):189-200 [PMID: 17160628]
Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
Astrobiology. 2005 Dec;5(6):770-7 [PMID: 16379530]
Microb Ecol. 2004 Feb;47(2):127-32 [PMID: 14994178]
Ecotoxicol Environ Saf. 2000 Feb;45(2):177-87 [PMID: 10648134]
Astrobiology. 2012 May;12(5):508-16 [PMID: 22680696]
Astrobiology. 2010 Mar;10(2):215-27 [PMID: 20402583]
PLoS One. 2012;7(11):e48674 [PMID: 23139812]
Anal Chem. 1996 Mar 1;68(5):850-8 [PMID: 8779443]
Extremophiles. 2009 Jan;13(1):49-57 [PMID: 18931823]
Appl Environ Microbiol. 2000 Aug;66(8):3230-3 [PMID: 10919774]
Fungal Genet Biol. 2011 Jun;48(6):641-9 [PMID: 21146624]
Fungal Biol. 2012 Aug;116(8):932-40 [PMID: 22862921]
Appl Environ Microbiol. 2012 Dec;78(24):8849-53 [PMID: 23064347]
Biochem Biophys Res Commun. 2010 Jan 1;391(1):868-73 [PMID: 19945422]
Fungal Biol. 2011 Oct;115(10):971-7 [PMID: 21944209]
FEMS Microbiol Lett. 1997 Jun 15;151(2):191-6 [PMID: 9228753]
Mycol Res. 2006 Nov;110(Pt 11):1347-54 [PMID: 17070679]
Mycopathologia. 2013 Jun;175(5-6):537-47 [PMID: 23073825]
Orig Life Evol Biosph. 2012 Jun;42(2-3):253-62 [PMID: 22688852]
Microbiol Mol Biol Rev. 2010 Mar;74(1):121-56 [PMID: 20197502]
Stud Mycol. 2008;61:99-109 [PMID: 19287532]
Fungal Genet Biol. 2013 May;54:42-51 [PMID: 23466345]
J Proteomics. 2014 Jan 31;97:151-63 [PMID: 23756228]
FEMS Microbiol Lett. 2008 Apr;281(2):109-20 [PMID: 18279333]
Curr Opin Microbiol. 2008 Dec;11(6):525-31 [PMID: 18848901]
Astrobiology. 2002 Fall;2(3):281-92 [PMID: 12530238]
Astrobiology. 2013 Apr;13(4):334-53 [PMID: 23560417]

Grants

  1. P 24206/Austrian Science Fund FWF

MeSH Term

Ascomycota
Electrophoresis, Gel, Two-Dimensional
Extraterrestrial Environment
Fungal Proteins
Fungi
Gene Expression Regulation, Fungal
Mars
Microbial Viability
Spacecraft
Ultraviolet Rays

Chemicals

Fungal Proteins

Word Cloud

Similar Articles

Cited By