Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development.

Zu-Kang Gong, Shuang-Jie Wang, Yong-Qi Huang, Rui-Qiang Zhao, Qi-Fang Zhu, Wen-Zhen Lin
Author Information
  1. Zu-Kang Gong: Guangxi Nanning Blood Center, Nanning, 530007, Guangxi, China.

Abstract

RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.

References

  1. PLoS One. 2013 Sep 19;8(9):e75609 [PMID: 24069432]
  2. J Anim Breed Genet. 2011 Aug;128(4):319-25 [PMID: 21749479]
  3. Int J Androl. 1998 Aug;21(4):186-95 [PMID: 9749348]
  4. BMC Plant Biol. 2008 Nov 07;8:112 [PMID: 18992143]
  5. Biotechniques. 2005 Jul;39(1):75-85 [PMID: 16060372]
  6. J Mol Endocrinol. 2003 Jun;30(3):263-70 [PMID: 12790798]
  7. Nature. 2010 Jan 28;463(7280):485-92 [PMID: 20110992]
  8. Scand J Immunol. 2004 Jun;59(6):566-73 [PMID: 15182252]
  9. BMC Cancer. 2008 Nov 27;8:350 [PMID: 19036168]
  10. BMC Res Notes. 2011 Oct 14;4:410 [PMID: 21996334]
  11. PLoS One. 2012;7(3):e31849 [PMID: 22438870]
  12. Plant Physiol. 2005 Sep;139(1):5-17 [PMID: 16166256]
  13. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  14. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  15. Int J Mol Sci. 2012;13(3):2810-26 [PMID: 22489127]
  16. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  17. Anal Biochem. 2005 Sep 1;344(1):141-3 [PMID: 16054107]
  18. Andrology. 2013 Mar;1(2):281-92 [PMID: 23315995]
  19. PLoS One. 2012;7(12):e53257 [PMID: 23300903]
  20. BMC Dev Biol. 2007 May 31;7:58 [PMID: 17540017]
  21. Thorax. 2002 Sep;57(9):765-70 [PMID: 12200519]
  22. Nat Protoc. 2006;1(3):1559-82 [PMID: 17406449]
  23. Mol Cell Probes. 2001 Oct;15(5):307-11 [PMID: 11735303]
  24. J Mol Neurosci. 2009 Mar;37(3):238-53 [PMID: 18607772]
  25. Anal Biochem. 2002 Oct 15;309(2):293-300 [PMID: 12413463]
  26. Plant Mol Biol. 2007 Mar;63(5):679-88 [PMID: 17143578]
  27. PLoS One. 2012;7(4):e32265 [PMID: 22511915]
  28. PLoS One. 2013;8(1):e54606 [PMID: 23342175]
  29. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  30. Philos Trans R Soc Lond B Biol Sci. 2010 May 27;365(1546):1663-78 [PMID: 20403877]
  31. BMC Mol Biol. 2009 Feb 20;10:11 [PMID: 19232096]
  32. BMC Mol Biol. 2008 Jan 29;9:17 [PMID: 18226276]
  33. Anal Biochem. 2010 Apr 15;399(2):257-61 [PMID: 20005862]
  34. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]

MeSH Term

Algorithms
Animals
DNA Primers
Gene Expression
Male
Mice
Real-Time Polymerase Chain Reaction
Receptor, Angiotensin, Type 1
Reference Standards
Testis

Chemicals

DNA Primers
Receptor, Angiotensin, Type 1

Word Cloud

Similar Articles

Cited By