Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide.

Yuyuan Zhang, Jordan Dood, Ashley A Beckstead, Xi-Bo Li, Khiem V Nguyen, Cynthia J Burrows, Roberto Improta, Bern Kohler
Author Information
  1. Yuyuan Zhang: Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717;
  2. Jordan Dood: Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717;
  3. Ashley A Beckstead: Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717;
  4. Xi-Bo Li: Department of Chemistry, University of Utah, Salt Lake City, UT 84112; and.
  5. Khiem V Nguyen: Department of Chemistry, University of Utah, Salt Lake City, UT 84112; and.
  6. Cynthia J Burrows: Department of Chemistry, University of Utah, Salt Lake City, UT 84112; and kohler@chemistry.montana.edu burrows@chem.utah.edu robimp@unina.it.
  7. Roberto Improta: Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80136 Naples, Italy kohler@chemistry.montana.edu burrows@chem.utah.edu robimp@unina.it.
  8. Bern Kohler: Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717; kohler@chemistry.montana.edu burrows@chem.utah.edu robimp@unina.it.

Abstract

During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity.

Keywords

References

Biopolymers. 1970;9(9):1059-77 [PMID: 5449435]
Photochem Photobiol Sci. 2013 Aug;12(8):1527-43 [PMID: 23842735]
J Phys Chem B. 2010 Mar 18;114(10):3660-7 [PMID: 20175506]
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4369-74 [PMID: 24616517]
J Am Chem Soc. 2009 Mar 25;131(11):3913-22 [PMID: 19292489]
Nature. 1992 Feb 27;355(6363):796-802 [PMID: 1311417]
J Am Chem Soc. 2014 Apr 30;136(17):6362-72 [PMID: 24735123]
Adv Mater. 2010 Oct 1;22(37):4097-111 [PMID: 20803527]
J Phys Chem B. 2012 Aug 30;116(34):10266-74 [PMID: 22853704]
Science. 1971 Feb 19;171(3972):675-7 [PMID: 5540307]
J Am Chem Soc. 2010 Sep 1;132(34):11834-5 [PMID: 20698570]
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10285-90 [PMID: 18647840]
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 [PMID: 15238266]
Acc Chem Res. 2008 Feb;41(2):157-67 [PMID: 18186612]
Acc Chem Res. 2012 Dec 18;45(12):2151-9 [PMID: 23054469]
Faraday Discuss. 2013;163:173-88; discussion 243-75 [PMID: 24020202]
J Am Chem Soc. 2013 Jul 17;135(28):10290-3 [PMID: 23837540]
J Am Chem Soc. 2007 Feb 21;129(7):2074-81 [PMID: 17256856]
Phys Chem Chem Phys. 2014 Jan 28;16(4):1487-99 [PMID: 24302276]
Nat Mater. 2013 Jan;12(1):66-73 [PMID: 23223125]
J Am Chem Soc. 2003 Aug 27;125(34):10213-8 [PMID: 12926943]
Biophys J. 2004 Sep;87(3):1848-57 [PMID: 15345563]
J Phys Chem A. 2013 Dec 5;117(48):12851-7 [PMID: 24215180]
J Phys Chem A. 2009 Feb 26;113(8):1459-71 [PMID: 19191520]
J Am Chem Soc. 2011 Sep 21;133(37):14586-9 [PMID: 21877686]
J Chem Phys. 2006 Mar 7;124(9):94107 [PMID: 16526845]
J Phys Chem A. 2013 Aug 8;117(31):6771-80 [PMID: 23815368]
J Am Chem Soc. 2008 Oct 1;130(39):13132-9 [PMID: 18767842]
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14831-6 [PMID: 21804035]
Science. 2007 Feb 2;315(5812):625-9 [PMID: 17272716]
Chem Rev. 2004 Apr;104(4):1977-2019 [PMID: 15080719]
Angew Chem Int Ed Engl. 2011 Dec 9;50(50):12016-9 [PMID: 22012744]
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2150-3 [PMID: 16467159]
Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
Nature. 2005 Aug 25;436(7054):1141-4 [PMID: 16121177]

MeSH Term

Base Pairing
Electron Transport
Guanine
Kinetics
Models, Chemical
Oligonucleotides
Photochemical Processes
Quantum Theory
Spectrophotometry, Atomic
Spectroscopy, Fourier Transform Infrared
Thermodynamics
Ultraviolet Rays

Chemicals

Oligonucleotides
8-hydroxyguanine
Guanine