Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice.

Oleg Butovsky, Mark P Jedrychowski, Ron Cialic, Susanne Krasemann, Gopal Murugaiyan, Zain Fanek, David J Greco, Pauline M Wu, Camille E Doykan, Olga Kiner, Robert J Lawson, Matthew P Frosch, Nathalie Pochet, Rachid El Fatimy, Anna M Krichevsky, Steven P Gygi, Hans Lassmann, James Berry, Merit E Cudkowicz, Howard L Weiner
Author Information
  1. Oleg Butovsky: Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02112.

Abstract

OBJECTIVE: To investigate miR-155 in the SOD1 mouse model and human sporadic and familial amyotrophic lateral sclerosis (ALS).
METHODS: NanoString microRNA, microglia and immune gene profiles, protein mass spectrometry, and RNA-seq analyses were measured in spinal cord microglia, splenic monocytes, and spinal cord tissue from SOD1 mice and in spinal cord tissue of familial and sporadic ALS. miR-155 was targeted by genetic ablation or by peripheral or centrally administered anti-miR-155 inhibitor in SOD1 mice.
RESULTS: In SOD1 mice, we found loss of the molecular signature that characterizes homeostatic microglia and increased expression of miR-155. There was loss of the microglial molecules P2ry12, Tmem119, Olfml3, transcription factors Egr1, Atf3, Jun, Fos, and Mafb, and the upstream regulators Csf1r, Tgfb1, and Tgfbr1, which are essential for microglial survival. Microglia biological functions were suppressed including phagocytosis. Genetic ablation of miR-155 increased survival in SOD1 mice by 51 days in females and 27 days in males and restored the abnormal microglia and monocyte molecular signatures. Disease severity in SOD1 males was associated with early upregulation of inflammatory genes, including Apoe in microglia. Treatment of adult microglia with apolipoprotein E suppressed the M0-homeostatic unique microglia signature and induced an M1-like phenotype. miR-155 expression was increased in the spinal cord of both familial and sporadic ALS. Dysregulated proteins that we identified in human ALS spinal cord were restored in SOD1(G93A) /miR-155(-/-) mice. Intraventricular anti-miR-155 treatment derepressed microglial miR-155 targeted genes, and peripheral anti-miR-155 treatment prolonged survival.
INTERPRETATION: We found overexpression of miR-155 in the SOD1 mouse and in both sporadic and familial human ALS. Targeting miR-155 in SOD1 mice restores dysfunctional microglia and ameliorates disease. These findings identify miR-155 as a therapeutic target for the treatment of ALS.

References

  1. Neuropathol Appl Neurobiol. 1993 Jun;19(3):214-23 [PMID: 7689189]
  2. Eur J Neurosci. 2000 Dec;12(12):4357-66 [PMID: 11122346]
  3. Glia. 2008 Feb;56(3):331-41 [PMID: 18098126]
  4. Glia. 2004 Jan 15;45(2):208-12 [PMID: 14730714]
  5. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20960-5 [PMID: 19933335]
  6. Immunity. 2007 Dec;27(6):847-59 [PMID: 18055230]
  7. J Clin Invest. 2012 Sep;122(9):3063-87 [PMID: 22863620]
  8. Nat Rev Neurosci. 2014 May;15(5):300-12 [PMID: 24713688]
  9. Hum Mol Genet. 2013 Oct 15;22(20):4127-35 [PMID: 23740943]
  10. Muscle Nerve. 2002 Oct;26(4):459-70 [PMID: 12362410]
  11. Immunity. 2010 Oct 29;33(4):607-19 [PMID: 20888269]
  12. Brain Behav. 2012 Sep;2(5):563-75 [PMID: 23139902]
  13. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2735-40 [PMID: 19193853]
  14. Neuron. 2014 Apr 16;82(2):380-97 [PMID: 24742461]
  15. N Engl J Med. 2013 May 2;368(18):1685-94 [PMID: 23534542]
  16. Int J Biol Sci. 2012;8(4):459-69 [PMID: 22419891]
  17. Nat Genet. 2010 May;42(5):392-9 [PMID: 20348957]
  18. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15558-63 [PMID: 18809917]
  19. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14638-43 [PMID: 18794523]
  20. J Neuropathol Exp Neurol. 2002 Aug;61(8):736-44 [PMID: 12152788]
  21. Nat Neurosci. 2006 Dec;9(12):1512-9 [PMID: 17115040]
  22. Cell. 2007 Dec 14;131(6):1124-36 [PMID: 18083102]
  23. Ann Neurol. 1995 Nov;38(5):788-96 [PMID: 7486871]
  24. Science. 2006 Jun 2;312(5778):1389-92 [PMID: 16741123]
  25. Cell. 2010 Dec 23;143(7):1174-89 [PMID: 21183079]
  26. J Immunol. 2011 Sep 1;187(5):2213-21 [PMID: 21788439]
  27. Science. 2007 Apr 27;316(5824):604-8 [PMID: 17463289]
  28. Immunity. 2009 Jan 16;30(1):80-91 [PMID: 19144316]
  29. Science. 2010 Nov 5;330(6005):841-5 [PMID: 20966214]
  30. Cell Death Dis. 2013;4:e525 [PMID: 23470532]
  31. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1604-9 [PMID: 17242365]
  32. Brain Res. 2011 Jun 7;1394:90-104 [PMID: 21354109]
  33. Science. 2010 Jan 8;327(5962):198-201 [PMID: 19965718]
  34. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6 [PMID: 17043238]
  35. Clin Dev Immunol. 2010;2010:186813 [PMID: 20613949]
  36. Ann Neurol. 2004 Feb;55(2):221-35 [PMID: 14755726]
  37. PLoS One. 2008;3(7):e2740 [PMID: 18648532]
  38. Am J Neurodegener Dis. 2012;1(3):305-15 [PMID: 23383400]
  39. PLoS One. 2013;8(4):e60921 [PMID: 23577177]
  40. Neuron. 2014 Mar 5;81(5):1009-23 [PMID: 24607225]
  41. Front Immunol. 2013 Oct 30;4:353 [PMID: 24198819]
  42. J Biol Chem. 2011 Jan 14;286(2):1436-44 [PMID: 21062749]
  43. Brain Behav Immun. 2013 Aug;32:70-85 [PMID: 23454862]
  44. Nat Med. 2011 Jan;17(1):64-70 [PMID: 21131957]
  45. J Exp Med. 2008 Mar 17;205(3):585-94 [PMID: 18299402]
  46. J Exp Med. 2011 Nov 21;208(12):2429-47 [PMID: 22084410]
  47. Ann Neurol. 2013 Nov;74(5):709-20 [PMID: 23818336]
  48. Nat Neurosci. 2007 May;10(5):615-22 [PMID: 17435755]
  49. Nat Neurosci. 2014 Jan;17(1):131-43 [PMID: 24316888]
  50. Hum Mol Genet. 2013 Oct 15;22(20):4102-16 [PMID: 23736299]
  51. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3111-6 [PMID: 20133617]
  52. J Neurol Sci. 2005 Sep 15;236(1-2):1-7 [PMID: 16024047]
  53. Nat Neurosci. 2013 May;16(5):571-9 [PMID: 23542689]
  54. J Biol Chem. 2010 Dec 31;285(53):41328-36 [PMID: 21036908]
  55. Exp Neurol. 2012 Sep;237(1):147-52 [PMID: 22735487]
  56. J Neural Transm (Vienna). 2010 Aug;117(8):949-60 [PMID: 20552234]
  57. Blood. 2012 Jul 19;120(3):511-8 [PMID: 22661701]
  58. Brain. 2009 Dec;132(Pt 12):3342-52 [PMID: 19952055]
  59. Cell Rep. 2013 Jul 25;4(2):385-401 [PMID: 23850290]
  60. J Biol Chem. 2012 Dec 7;287(50):42233-42 [PMID: 23076148]
  61. Nature. 2012 Apr 5;484(7392):105-9 [PMID: 22425995]

Grants

  1. R01 AG043975/NIA NIH HHS
  2. R01 NS088137/NINDS NIH HHS
  3. 1R01NS088137/NINDS NIH HHS

MeSH Term

Aged
Amyotrophic Lateral Sclerosis
Animals
Apolipoproteins E
Cells, Cultured
Disease Models, Animal
Female
Gene Expression Regulation
Hippocampus
Humans
Male
Mice
Mice, Transgenic
MicroRNAs
Microglia
Middle Aged
Monocytes
Neurons
Oligoribonucleotides, Antisense
Phagocytosis
Spinal Cord
Superoxide Dismutase
Transforming Growth Factor beta

Chemicals

Apolipoproteins E
MicroRNAs
Mirn155 microRNA, mouse
Oligoribonucleotides, Antisense
Transforming Growth Factor beta
SOD1 G93A protein
Superoxide Dismutase