Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases.

Jacques Lux, Alexander G White, Minnie Chan, Carolyn J Anderson, Adah Almutairi
Author Information
  1. Jacques Lux: 1. Skaggs School of Pharmacy and Pharmaceutical Sciences, and the Laboratory of Bioresponsive Materials, University of California, San Diego. 9500 Gilman Dr. 0600, La Jolla, CA 92093-0600, United States.
  2. Alexander G White: 2. University of Pittsburgh Departments of Radiology, Pharmacology & Chemical Biology and Bioengineering. Molecular Imaging Laboratory, 100 Technology Drive, Pittsburgh, PA 15219, United States.
  3. Minnie Chan: 1. Skaggs School of Pharmacy and Pharmaceutical Sciences, and the Laboratory of Bioresponsive Materials, University of California, San Diego. 9500 Gilman Dr. 0600, La Jolla, CA 92093-0600, United States.
  4. Carolyn J Anderson: 2. University of Pittsburgh Departments of Radiology, Pharmacology & Chemical Biology and Bioengineering. Molecular Imaging Laboratory, 100 Technology Drive, Pittsburgh, PA 15219, United States.
  5. Adah Almutairi: 1. Skaggs School of Pharmacy and Pharmaceutical Sciences, and the Laboratory of Bioresponsive Materials, University of California, San Diego. 9500 Gilman Dr. 0600, La Jolla, CA 92093-0600, United States. ; 3. KACST-UCSD Center for Excellence in Nanomedicine and Engineering.

Abstract

Metals are essential in medicine for both therapy and diagnosis. We recently created the first metal-chelating nanogel imaging agent, which employed versatile, reproducible chemistry that maximizes chelation stability. Here we demonstrate that our metal chelating crosslinked nanogel technology is a powerful platform by incorporating (64)Cu to obtain PET radiotracers. Polyacrylamide-based nanogels were crosslinked with three different polydentate ligands (DTPA, DOTA, NOTA). NOTA-based nanogels stably retained (64)Cu in mouse serum and accumulated in tumors in vivo as detected by PET/CT imaging. Measurement of radioactivity in major organs ex vivo confirmed this pattern, revealing a high accumulation (12.3% ID/g and 16.6% ID/g) in tumors at 24 and 48 h following administration, with lower accumulation in the liver (8.5% ID/g at 24 h) and spleen (5.5% ID/g). Nanogels accumulated even more efficiently in metastases (29.9% and 30.4% ID/g at 24 and 48 h). These metal-chelating nanogels hold great promise for future application as bimodal PET/MRI agents; chelation of β-emitting radionuclides could enable radiation therapy.

Keywords

References

Nucl Med Biol. 2013 Apr;40(3):345-50 [PMID: 23394821]
Cancer Biother Radiopharm. 2008 Apr;23(2):158-71 [PMID: 18454685]
Int J Toxicol. 2005;24 Suppl 2:21-50 [PMID: 16154914]
J Am Chem Soc. 2014 Feb 5;136(5):1706-9 [PMID: 24401138]
Nature. 2008 Apr 3;452(7187):580-9 [PMID: 18385732]
Bioconjug Chem. 2007 Jan-Feb;18(1):77-83 [PMID: 17226959]
Bioconjug Chem. 2010 Apr 21;21(4):715-22 [PMID: 20353170]
Cancer Biother Radiopharm. 2009 Aug;24(4):379-93 [PMID: 19694573]
J Am Chem Soc. 2010 Nov 3;132(43):15351-8 [PMID: 20942456]
Nucl Med Biol. 1993 May;20(4):461-7 [PMID: 8504288]
Angew Chem Int Ed Engl. 2009;48(30):5418-29 [PMID: 19562807]
J Appl Toxicol. 2013 Sep;33(9):940-50 [PMID: 22733552]
Anal Biochem. 1985 Jul;148(1):249-53 [PMID: 4037304]
Biomater Sci. 2013 Oct;1(10):1055-1064 [PMID: 24058728]
Chem Soc Rev. 2006 Jun;35(6):512-23 [PMID: 16729145]
ACS Nano. 2012 Jun 26;6(6):5209-19 [PMID: 22548282]
Eur J Pharm Sci. 2006 Oct 1;29(2):120-9 [PMID: 16904301]
J Drug Target. 2000;8(2):91-105 [PMID: 10852341]
J Nucl Med. 2011 Jul;52(7):1110-8 [PMID: 21680701]
Angew Chem Int Ed Engl. 2014 Jan 3;53(1):156-9 [PMID: 24272951]
Plast Reconstr Surg. 2003 May;111(6):1883-90 [PMID: 12711948]
Bioconjug Chem. 2011 Aug 17;22(8):1729-35 [PMID: 21761921]
J Pharmacol Exp Ther. 1979 Dec;211(3):656-62 [PMID: 512927]
J Nucl Med. 2005 Jul;46(7):1210-8 [PMID: 16000291]
Mol Pharm. 2013 Jun 3;10(6):2190-8 [PMID: 23586421]
ACS Nano. 2011 Feb 22;5(2):738-47 [PMID: 21275414]
Biomacromolecules. 2007 Oct;8(10):3126-34 [PMID: 17880180]
J Mater Chem B Mater Biol Med. 2013 Dec 14;1(46):6359-6364 [PMID: 24505553]
Macromolecules. 2007;40(9):2971-2973 [PMID: 18779874]
Chem Rev. 1999 Sep 8;99(9):2219-34 [PMID: 11749480]
Biomacromolecules. 2014 May 12;15(5):1625-33 [PMID: 24645913]
Mol Pharm. 2008 Jul-Aug;5(4):505-15 [PMID: 18672949]
Bioconjug Chem. 2014 Mar 19;25(3):601-10 [PMID: 24506683]
Biomacromolecules. 2008 Apr;9(4):1329-39 [PMID: 18338840]
Angew Chem Int Ed Engl. 2008;47(45):8568-80 [PMID: 18825758]
J Control Release. 2005 Jul 20;105(3):199-212 [PMID: 15935507]
J Med Chem. 2002 Jan 17;45(2):469-77 [PMID: 11784151]
ACS Nano. 2012 Jul 24;6(7):5880-8 [PMID: 22690722]
Circulation. 2008 Jan 22;117(3):379-87 [PMID: 18158358]
Chem Rev. 1999 Sep 8;99(9):2353-78 [PMID: 11749484]
Biomaterials. 2011 Jun;32(17):4151-60 [PMID: 21367450]
Inorg Chem. 2011 Sep 19;50(18):8946-58 [PMID: 21859074]
Anal Chem. 2012 Aug 7;84(15):6278-87 [PMID: 22624599]
Macromol Rapid Commun. 2013 Apr 12;34(7):562-7 [PMID: 23423755]
Bioconjug Chem. 2013 Feb 20;24(2):196-204 [PMID: 23272904]
Mol Pharm. 2014 Nov 3;11(11):3930-7 [PMID: 24992368]
Theranostics. 2014;4(6):614-28 [PMID: 24723983]
J Thorac Dis. 2013 Aug;5(4):385-92 [PMID: 23991292]
Chem Rev. 1999 Sep 8;99(9):2293-352 [PMID: 11749483]
J Med Chem. 2004 Mar 11;47(6):1465-74 [PMID: 14998334]
J Nucl Med. 2008 Jan;49(1):103-11 [PMID: 18077519]

Grants

  1. P30 CA047904/NCI NIH HHS
  2. DP 2OD006499/NIH HHS
  3. P30CA047904/NCI NIH HHS

MeSH Term

Animals
Copper Radioisotopes
Drug Stability
Humans
Mice
Nanogels
Neoplasm Metastasis
Neoplasms
Polyethylene Glycols
Polyethyleneimine
Positron-Emission Tomography

Chemicals

Copper Radioisotopes
Nanogels
polyethylene glycol polyethyleneimine nanogel
Polyethylene Glycols
Polyethyleneimine