Domain generality versus modality specificity: the paradox of statistical learning.

Ram Frost, Blair C Armstrong, Noam Siegelman, Morten H Christiansen
Author Information
  1. Ram Frost: The Hebrew University of Jerusalem, Jerusalem, Israel; Haskins Laboratories, New Haven, CT, USA; Basque Center for Cognition, Brain, and Language, San Sebastian, Spain. Electronic address: ram.frost@mail.huji.ac.il.
  2. Blair C Armstrong: Basque Center for Cognition, Brain, and Language, San Sebastian, Spain.
  3. Noam Siegelman: The Hebrew University of Jerusalem, Jerusalem, Israel.
  4. Morten H Christiansen: Haskins Laboratories, New Haven, CT, USA; Cornell University, Ithaca, NY, USA; University of Southern Denmark, Odense, Denmark.

Abstract

Statistical learning (SL) is typically considered to be a domain-general mechanism by which cognitive systems discover the underlying distributional properties of the input. However, recent studies examining whether there are commonalities in the learning of distributional information across different domains or modalities consistently reveal modality and stimulus specificity. Therefore, important questions are how and why a hypothesized domain-general learning mechanism systematically produces such effects. Here, we offer a theoretical framework according to which SL is not a unitary mechanism, but a set of domain-general computational principles that operate in different modalities and, therefore, are subject to the specific constraints characteristic of their respective brain regions. This framework offers testable predictions and we discuss its computational and neurobiological plausibility.

Keywords

References

Neuroimage. 2009 Oct 1;47(4):1974-81 [PMID: 19477281]
Hear Res. 2009 Dec;258(1-2):89-99 [PMID: 19393306]
J Exp Psychol Learn Mem Cogn. 2011 Sep;37(5):1081-91 [PMID: 21574745]
Lang Cogn Process. 2012 Jan 1;27(2):231-256 [PMID: 23678205]
Psychol Sci. 2013 Jul 1;24(7):1243-52 [PMID: 23698615]
Cognition. 2011 Oct;121(1):127-32 [PMID: 21745660]
Nat Rev Neurosci. 2010 Feb;11(2):127-38 [PMID: 20068583]
Psychol Sci. 2001 Nov;12(6):499-504 [PMID: 11760138]
Cogn Sci. 2013 Mar;37(2):310-43 [PMID: 23126517]
Exp Psychol. 2009;56(3):188-97 [PMID: 19289361]
Front Psychol. 2013 Sep 19;4:635 [PMID: 24065939]
Trends Cogn Sci. 2014 Jan;18(1):16-25 [PMID: 24268290]
J Cogn Neurosci. 2014 Aug;26(8):1736-47 [PMID: 24456393]
Physiol Rev. 2008 Apr;88(2):769-840 [PMID: 18391179]
Behav Brain Res. 2013 Jun 15;247:101-9 [PMID: 23499707]
Cognition. 2001 Mar;78(3):B53-64 [PMID: 11124355]
Eur J Neurosci. 2012 Apr;35(7):1011-23 [PMID: 22487032]
Neuroreport. 2000 Apr 27;11(6):1253-8 [PMID: 10817602]
Nat Neurosci. 2000 Mar;3(3):264-9 [PMID: 10700259]
Nature. 1976 Dec 23-30;264(5588):746-8 [PMID: 1012311]
Nat Rev Neurosci. 2007 Dec;8(12):976-87 [PMID: 18026167]
Brain Res Cogn Brain Res. 2003 Jun;17(1):154-63 [PMID: 12763201]
PLoS One. 2013;8(7):e68910 [PMID: 23861951]
Science. 1971 Jan 22;171(3968):303-6 [PMID: 5538846]
Psychol Sci. 2007 May;18(5):387-91 [PMID: 17576276]
Atten Percept Psychophys. 2013 Jul;75(5):790-811 [PMID: 23709064]
Front Syst Neurosci. 2013 Oct 30;7:74 [PMID: 24198767]
J Exp Psychol Gen. 2001 Dec;130(4):658-80 [PMID: 11757874]
Nat Rev Neurosci. 2003 Apr;4(4):310-22 [PMID: 12671647]
Dev Psychol. 2012 Jan;48(1):171-84 [PMID: 21967562]
Brain Lang. 2014 May;132:22-7 [PMID: 24686264]
Cogn Psychol. 2013 Feb;66(1):30-54 [PMID: 23089290]
Q J Exp Psychol (Hove). 2011 May;64(5):1021-40 [PMID: 21347988]
Cogn Neuropsychol. 2011 Oct;28(7):466-74; discussion 515-20 [PMID: 22746688]
Front Psychol. 2010 Sep 14;1:31 [PMID: 21833201]
Brain Lang. 2012 Feb;120(2):83-95 [PMID: 20943261]
J Neurosci. 2005 Jun 1;25(22):5356-64 [PMID: 15930384]
Commun Integr Biol. 2011 Jul;4(4):378-81 [PMID: 21966551]
Brain Lang. 2013 Oct;127(1):46-54 [PMID: 23312790]
Cogn Neurodyn. 2010 Jun;4(2):91-105 [PMID: 21629583]
J Exp Psychol Gen. 2013 Nov;142(4):1159-70 [PMID: 24246058]
J Neurosci. 2006 Jul 19;26(29):7629-39 [PMID: 16855090]
Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
Cognition. 2010 Sep;116(3):321-40 [PMID: 20573341]
Learn Mem. 2002 May-Jun;9(3):99-104 [PMID: 12074997]
Cogn Neuropsychol. 2011 May;28(3-4):251-75 [PMID: 22185237]
Trends Cogn Sci. 2013 May;17(5):230-40 [PMID: 23597720]
J Exp Psychol Learn Mem Cogn. 2002 May;28(3):458-67 [PMID: 12018498]
Psychon Bull Rev. 2009 Jun;16(3):486-90 [PMID: 19451373]
Trends Cogn Sci. 2014 Feb;18(2):90-8 [PMID: 24373885]
Psychol Sci. 2006 Oct;17(10):905-12 [PMID: 17100792]
Curr Dir Psychol Sci. 2012 Jun 1;21(3):170-176 [PMID: 24000273]
Brain Res. 2012 Nov 16;1485:95-107 [PMID: 22995545]
J Cogn Neurosci. 1993 Summer;5(3):363-70 [PMID: 23972223]
J Neurosci. 2000 Mar 1;20(5):1975-81 [PMID: 10684898]
Cogn Sci. 2014 Aug;38(6):1229-48 [PMID: 22141588]
Science. 1996 Dec 13;274(5294):1926-8 [PMID: 8943209]
Trends Cogn Sci. 2013 Feb;17(2):81-8 [PMID: 23318095]
Percept Psychophys. 2005 Jul;67(5):867-75 [PMID: 16334058]
Mem Cognit. 2000 Mar;28(2):253-63 [PMID: 10790980]
J Cogn Neurosci. 2009 Oct;21(10):1934-45 [PMID: 18823241]
Trends Cogn Sci. 2006 Jul;10(7):294-300 [PMID: 16793323]
J Exp Psychol Learn Mem Cogn. 2005 Jan;31(1):24-39 [PMID: 15641902]
Neuroscience. 2012 Jul 12;214:36-48 [PMID: 22516006]
Trends Cogn Sci. 2014 Mar;18(3):120-6 [PMID: 24440115]
Front Psychol. 2014 May 16;5:407 [PMID: 24904449]
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2745-50 [PMID: 18268353]
Psychol Sci. 2004 Jul;15(7):460-6 [PMID: 15200630]
Psychol Rev. 1995 Jul;102(3):419-57 [PMID: 7624455]
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19067-72 [PMID: 20956328]
Cognition. 2002 Mar;83(2):B35-42 [PMID: 11869728]
Psychol Bull. 2013 Jul;139(4):792-814 [PMID: 23231530]
Brain Lang. 2012 Mar;120(3):271-81 [PMID: 21945392]
Cogn Sci. 2012 Mar;36(2):286-304 [PMID: 21974775]
Hippocampus. 2014 Mar;24(3):293-302 [PMID: 24167043]

Grants

  1. P01 HD001994/NICHD NIH HHS
  2. R01 HD067364/NICHD NIH HHS
  3. P01 HD 01994/NICHD NIH HHS
  4. R01 HD 067364/NICHD NIH HHS

MeSH Term

Brain
Humans
Individuality
Models, Psychological
Probability Learning