Validation of Tuba1a as appropriate internal control for normalization of gene expression analysis during mouse lung development.

Aditi Mehta, Stephanie Dobersch, Reinhard H Dammann, Saverio Bellusci, Olga N Ilinskaya, Thomas Braun, Guillermo Barreto
Author Information
  1. Aditi Mehta: LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany. aditi.mehta@mpi-bn.mpg.de.
  2. Stephanie Dobersch: LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany. stephanie.dobersch@mpi-bn.mpg.de.
  3. Reinhard H Dammann: Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany. reinhard.dammann@gen.bio.uni-giessen.de.
  4. Saverio Bellusci: Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany. Olga.Ilinskaya@ksu.ru.
  5. Olga N Ilinskaya: Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St, 420008 Kazan, Russian Federation. Olga.Ilinskaya@ksu.ru.
  6. Thomas Braun: Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany. Thomas.Braun@mpi-bn.mpg.de.
  7. Guillermo Barreto: LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany. guillermo.barreto@mpi-bn.mpg.de.

Abstract

The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.

References

  1. Mol Cancer. 2010;9:171 [PMID: 20591170]
  2. Annu Rev Biochem. 1977;46:931-54 [PMID: 332067]
  3. Anal Biochem. 2001 Jan 1;288(1):99-102 [PMID: 11141312]
  4. World J Gastroenterol. 2013 Nov 7;19(41):7121-8 [PMID: 24222956]
  5. Strahlenther Onkol. 2014 Jan;190(1):26-33 [PMID: 24052011]
  6. J Virol. 1975 Feb;15(2):297-304 [PMID: 163357]
  7. Bioessays. 2007 Jul;29(7):668-77 [PMID: 17563102]
  8. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  9. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  10. BMC Mol Biol. 2005;6:21 [PMID: 16293192]
  11. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  12. PLoS One. 2010;5(5):e10854 [PMID: 20520778]
  13. Am J Physiol Lung Cell Mol Physiol. 2001 May;280(5):L823-38 [PMID: 11290504]
  14. Nat Protoc. 2006;1(3):1559-82 [PMID: 17406449]
  15. Biotechniques. 2000 Aug;29(2):332-7 [PMID: 10948434]
  16. Am J Respir Cell Mol Biol. 2005 Nov;33(5):455-62 [PMID: 16055670]
  17. Synapse. 2008 Apr;62(4):302-9 [PMID: 18241047]
  18. Biol Reprod. 1997 May;56(5):1323-9 [PMID: 9160734]
  19. PLoS One. 2008;3(3):e1854 [PMID: 18365009]
  20. Methods Mol Biol. 2010;633:71-9 [PMID: 20204620]
  21. Nucleic Acids Res. 1984 Sep 25;12(18):6951-63 [PMID: 6548307]
  22. Nucleic Acids Res. 1985 Mar 11;13(5):1431-42 [PMID: 2987824]
  23. Dev Biol. 1993 Apr;156(2):426-43 [PMID: 8462742]
  24. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10482-7 [PMID: 12145322]
  25. Oncogene. 2008 Aug 21;27(36):4921-32 [PMID: 18454176]
  26. Mech Dev. 2000 Mar 15;92(1):55-81 [PMID: 10704888]
  27. Br J Haematol. 1987 Nov;67(3):301-5 [PMID: 3318912]
  28. Development. 2006 May;133(9):1611-24 [PMID: 16613830]
  29. Anal Biochem. 1997 Feb 15;245(2):154-60 [PMID: 9056205]
  30. Physiol Genomics. 2005 May 11;21(3):389-95 [PMID: 15769908]
  31. Genes Immun. 2005 Jun;6(4):279-84 [PMID: 15815687]
  32. Nucl Recept Signal. 2003;1:e012 [PMID: 16604184]
  33. Anal Bioanal Chem. 2013 Jan;405(1):315-20 [PMID: 23086083]
  34. BMC Mol Biol. 2008;9:102 [PMID: 19014500]
  35. Mol Cell Biol. 2006 Nov;26(21):8042-51 [PMID: 16923958]
  36. BMC Res Notes. 2013;6:388 [PMID: 24073624]
  37. Chromosoma. 1975 Oct 14;52(3):219-28 [PMID: 1183299]
  38. PLoS One. 2012;7(8):e41659 [PMID: 22927912]
  39. Genomics. 2011 Aug;98(2):137-44 [PMID: 21569836]
  40. Nat Protoc. 2012 Jan;7(1):118-27 [PMID: 22193304]
  41. Genome Biol. 2007;8(2):R19 [PMID: 17291332]
  42. BMC Biol. 2014;12:21 [PMID: 24661562]
  43. Expert Opin Ther Targets. 2013 Jun;17(6):681-93 [PMID: 23445303]

MeSH Term

Actins
Animals
Animals, Newborn
Base Sequence
Female
Gene Expression Regulation, Developmental
Glyceraldehyde-3-Phosphate Dehydrogenases
Histones
Lung
Mice, Inbred C57BL
Molecular Sequence Data
Pregnancy
RNA, Ribosomal, 18S
Reference Standards
Reproducibility of Results
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Sequence Homology, Nucleic Acid
Tubulin

Chemicals

Actins
Histones
RNA, Ribosomal, 18S
Tuba1a protein, mouse
Tubulin
Glyceraldehyde-3-Phosphate Dehydrogenases