Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition.

Chaoyang Cheng, Yoshiaki Tarutani, Akio Miyao, Tasuku Ito, Muneo Yamazaki, Hiroaki Sakai, Eigo Fukai, Hirohiko Hirochika
Author Information
  1. Chaoyang Cheng: National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
  2. Yoshiaki Tarutani: National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
  3. Akio Miyao: National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.
  4. Tasuku Ito: National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
  5. Muneo Yamazaki: National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.
  6. Hiroaki Sakai: National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.
  7. Eigo Fukai: National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.
  8. Hirohiko Hirochika: National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.

Abstract

Methylation patterns of plants are unique as, in addition to the methylation at CG dinucleotides that occurs in mammals, methylation also occurs at non-CG sites. Genes are methylated at CG sites, but transposable elements (TEs) are methylated at both CG and non-CG sites. The role of non-CG methylation in transcriptional silencing of TEs is being extensively studied at this time, but only very rare transpositions have been reported when non-CG methylation machineries have been compromised. To understand the role of non-CG methylation in TE suppression and in plant development, we characterized rice mutants with changes in the chromomethylase gene, OsCMT3a. oscmt3a mutants exhibited a dramatic decrease in CHG methylation, changes in the expression of some genes and TEs, and pleiotropic developmental abnormalities. Genome resequencing identified eight TE families mobilized in oscmt3a during normal propagation. These TEs included tissue culture-activated copia retrotransposons Tos17 and Tos19 (Lullaby), a pericentromeric clustered high-copy-number non-autonomous gypsy retrotransposon Dasheng, two copia retrotransposons Osr4 and Osr13, a hAT-tip100 transposon DaiZ, a MITE transposon mPing, and a LINE element LINE1-6_OS. We confirmed the transposition of these TEs by polymerase chain reaction (PCR) and/or Southern blot analysis, and showed that transposition was dependent on the oscmt3a mutation. These results demonstrated that OsCMT3a-mediated non-CG DNA methylation plays a critical role in development and in the suppression of a wide spectrum of TEs. These in planta mobile TEs are important for studying the interaction between TEs and the host genome, and for rice functional genomics.

Keywords

Associated Data

GENBANK | AB360583; AB360584; AB360585
SRA | SRR1598921; SRR1609155; SRR1609931; SRR1609959; SRR1609962; SRR1610772; SRR1611679; SRR1611761; SRR1611763; SRR1611765; SRR1611769; SRR1611770

MeSH Term

DNA (Cytosine-5-)-Methyltransferases
DNA Methylation
DNA Transposable Elements
Gene Expression Regulation, Plant
Gibberellins
Molecular Sequence Data
Mutation
Oryza
Plant Proteins
Retroelements

Chemicals

DNA Transposable Elements
Gibberellins
Plant Proteins
Retroelements
DNA (Cytosine-5-)-Methyltransferases
chromomethylase