TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors.

Katherine E Wilkins, Nicholas J Booher, Li Wang, Adam J Bogdanove
Author Information
  1. Katherine E Wilkins: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA ; Graduate Field of Computational Biology, Cornell University Ithaca, NY, USA.
  2. Nicholas J Booher: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA ; Graduate Field of Computational Biology, Cornell University Ithaca, NY, USA.
  3. Li Wang: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.
  4. Adam J Bogdanove: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.

Abstract

Xanthomonas oryzae pv. oryzicola (Xoc) causes the increasingly important disease bacterial leaf streak of rice (BLS) in part by type III delivery of repeat-rich transcription activator-like (TAL) effectors to upregulate host susceptibility genes. By pathogen whole genome, single molecule, real-time sequencing and host RNA sequencing, we compared TAL effector content and rice transcriptional responses across 10 geographically diverse Xoc strains. TAL effector content is surprisingly conserved overall, yet distinguishes Asian from African isolates. Five TAL effectors are conserved across all strains. In a prior laboratory assay in rice cv. Nipponbare, only two contributed to virulence in strain BLS256 but the strict conservation indicates all five may be important, in different rice genotypes or in the field. Concatenated and aligned, TAL effector content across strains largely reflects relationships based on housekeeping genes, suggesting predominantly vertical transmission. Rice transcriptional responses did not reflect these relationships, and on average, only 28% of genes upregulated and 22% of genes downregulated by a strain are up- and down- regulated (respectively) by all strains. However, when only known TAL effector targets were considered, the relationships resembled those of the TAL effectors. Toward identifying new targets, we used the TAL effector-DNA recognition code to predict effector binding elements in promoters of genes upregulated by each strain, but found that for every strain, all upregulated genes had at least one. Filtering with a classifier we developed previously decreases the number of predicted binding elements across the genome, suggesting that it may reduce false positives among upregulated genes. Applying this filter and eliminating genes for which upregulation did not strictly correlate with presence of the corresponding TAL effector, we generated testable numbers of candidate targets for four of the five strictly conserved TAL effectors.

Keywords

References

  1. New Phytol. 2014 Dec;204(4):823-32 [PMID: 25539004]
  2. Bioinformatics. 2010 Oct 1;26(19):2455-7 [PMID: 20671151]
  3. New Phytol. 2013 Nov;200(3):808-819 [PMID: 23879865]
  4. Nat Commun. 2014 Mar 11;5:3447 [PMID: 24614980]
  5. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  6. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E521-9 [PMID: 24474801]
  7. Science. 2009 Dec 11;326(5959):1509-12 [PMID: 19933107]
  8. Bioinformatics. 2005 May 15;21(10):2531-3 [PMID: 15713735]
  9. BioData Min. 2012 Jun 18;5(1):6 [PMID: 22709551]
  10. Nat Biotechnol. 2012 May 07;30(5):390-2 [PMID: 22565958]
  11. Science. 2007 Oct 26;318(5850):648-51 [PMID: 17962565]
  12. Curr Opin Struct Biol. 2013 Feb;23(1):93-9 [PMID: 23265998]
  13. Biochim Biophys Acta. 1991 Mar 7;1071(1):83-101 [PMID: 2004116]
  14. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  15. Cell. 1996 Dec 27;87(7):1307-16 [PMID: 8980236]
  16. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  17. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  18. BMC Bioinformatics. 2010 Feb 18;11:94 [PMID: 20167110]
  19. Plant Dis. 2000 Apr;84(4):465-469 [PMID: 30841171]
  20. Plant Cell. 2010 Nov;22(11):3864-76 [PMID: 21098734]
  21. New Phytol. 2010 Sep;187(4):1048-1057 [PMID: 20345643]
  22. PLoS One. 2010 Jun 25;5(6):e11147 [PMID: 20593022]
  23. Plant Dis. 2011 Jan;95(1):72 [PMID: 30743690]
  24. Bioinformatics. 2011 Sep 1;27(17):2325-9 [PMID: 21697122]
  25. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  26. Syst Biol. 2000 Dec;49(4):652-70 [PMID: 12116432]
  27. J Mol Evol. 1989 Aug;29(2):170-9 [PMID: 2509717]
  28. Plant Physiol. 2005 Mar;137(3):1147-59 [PMID: 15728340]
  29. Science. 2007 Oct 26;318(5850):645-8 [PMID: 17962564]
  30. Bioinformatics. 2002 Mar;18(3):502-4 [PMID: 11934758]
  31. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22 [PMID: 22693217]
  32. Chem Commun (Camb). 2013 May 14;49(39):4325-7 [PMID: 23230569]
  33. New Phytol. 2012 Sep;195(4):883-893 [PMID: 22747776]
  34. Science. 2009 Dec 11;326(5959):1501 [PMID: 19933106]
  35. Mol Biol Evol. 2006 Oct;23(10):1891-901 [PMID: 16818476]
  36. Plant Cell Rep. 2012 May;31(5):851-62 [PMID: 22218673]
  37. Nature. 2005 Jun 23;435(7045):1122-5 [PMID: 15973413]
  38. Bioinformatics. 2010 Feb 15;26(4):572-3 [PMID: 20031974]
  39. Mol Plant Microbe Interact. 1998 Aug;11(8):824-32 [PMID: 9675896]
  40. PLoS One. 2012;7(3):e33279 [PMID: 22442681]
  41. Plant Biotechnol J. 2015 Sep;13(7):993-1001 [PMID: 25644581]
  42. Genome Biol. 2008 Oct 13;9(10):R151 [PMID: 18851752]
  43. BMC Genomics. 2008 May 01;9:204 [PMID: 18452608]
  44. Nucleic Acids Res. 2005 Jan 26;33(2):577-86 [PMID: 15673718]
  45. Mol Plant Microbe Interact. 2011 Sep;24(9):1102-13 [PMID: 21679014]
  46. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6 [PMID: 10097118]
  47. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  48. Annu Rev Phytopathol. 2010;48:419-36 [PMID: 19400638]
  49. Bioinformatics. 2006 Dec 15;22(24):3096-8 [PMID: 17110367]
  50. PLoS Pathog. 2014 Feb 27;10(2):e1003972 [PMID: 24586171]
  51. BMC Genomics. 2014 Feb 25;15:157 [PMID: 24564253]
  52. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  53. Mol Plant Microbe Interact. 2007 May;20(5):534-46 [PMID: 17506331]
  54. Phytopathology. 2014 May;104(5):520-31 [PMID: 24199713]
  55. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  56. Nat Methods. 2015 May;12(5):465-71 [PMID: 25799440]
  57. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  58. Mol Plant Pathol. 2006 Sep;7(5):303-24 [PMID: 20507449]
  59. Nucleic Acids Res. 2014 Dec 1;42(21):13061-73 [PMID: 25389273]
  60. Plant J. 2014 Jun;78(5):753-71 [PMID: 24602153]
  61. Genes Dev. 2006 May 15;20(10):1250-5 [PMID: 16648463]
  62. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  63. Stat Appl Genet Mol Biol. 2012 Oct 22;11(5): [PMID: 23104842]
  64. Bioinformatics. 2008 Feb 1;24(3):319-24 [PMID: 18042555]
  65. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  66. Plant Cell. 2014 Jan;26(1):497-515 [PMID: 24488961]
  67. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  68. Cell Res. 2014 May;24(5):628-31 [PMID: 24513857]
  69. Plant Cell Physiol. 2009 May;50(5):947-55 [PMID: 19318375]
  70. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  71. Science. 2012 Feb 10;335(6069):720-3 [PMID: 22223738]
  72. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10503-10508 [PMID: 16798873]
  73. J Bacteriol. 2011 Oct;193(19):5450-64 [PMID: 21784931]
  74. mBio. 2015 Feb 17;6(1):e02505-14 [PMID: 25691597]
  75. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  76. J Bacteriol. 2005 Nov;187(21):7254-66 [PMID: 16237009]
  77. Science. 2009 Jan 2;323(5910):133-8 [PMID: 19023044]