Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

Alessandra Lanubile, Usha K Muppirala, Andrew J Severin, Adriano Marocco, Gary P Munkvold
Author Information
  1. Alessandra Lanubile: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy. alessandra.lanubile@unicatt.it.
  2. Usha K Muppirala: Genome Informatics Facility, Office of Biotechnology, Iowa State University, 50011, Ames, IA, USA. usha@iastate.edu.
  3. Andrew J Severin: Genome Informatics Facility, Office of Biotechnology, Iowa State University, 50011, Ames, IA, USA. severin@iastate.edu.
  4. Adriano Marocco: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy. adriano.marocco@unicatt.it.
  5. Gary P Munkvold: Department of Plant Pathology and Microbiology, Iowa State University, 50011, Ames, IA, USA. munkvold@iastate.edu.

Abstract

BACKGROUND: Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates.
RESULTS: We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism.
CONCLUSIONS: The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

References

  1. Nature. 2010 Nov 25;468(7323):527-32 [PMID: 21107422]
  2. Trends Plant Sci. 2004 Dec;9(12):606-13 [PMID: 15564128]
  3. Ann Bot. 2002 May;89(5):503-12 [PMID: 12099523]
  4. BMC Genomics. 2013 Dec 05;14:851 [PMID: 24304681]
  5. Plant Dis. 2011 Apr;95(4):401-407 [PMID: 30743330]
  6. Plant J. 2004 Mar;37(6):914-39 [PMID: 14996223]
  7. Theor Appl Genet. 2015 May;128(5):827-38 [PMID: 25690715]
  8. Front Plant Sci. 2013 Jun 04;4:171 [PMID: 23761800]
  9. Mol Plant Microbe Interact. 2004 Jun;17(6):654-67 [PMID: 15195948]
  10. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  11. Trends Plant Sci. 2012 Jun;17(6):369-81 [PMID: 22445067]
  12. Curr Opin Plant Biol. 2012 Aug;15(4):367-74 [PMID: 22664220]
  13. Nature. 2007 Jul 26;448(7152):497-500 [PMID: 17625569]
  14. BMC Genomics. 2011 Feb 21;12:122 [PMID: 21338485]
  15. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  16. Cell Res. 2008 Jul;18(7):756-67 [PMID: 18427573]
  17. BMC Genomics. 2012 Aug 05;13:374 [PMID: 22863187]
  18. Mol Cell. 2000 Jun;5(6):1003-11 [PMID: 10911994]
  19. Curr Opin Plant Biol. 2005 Oct;8(5):541-7 [PMID: 16043387]
  20. Phytopathology. 2014 Dec;104(12):1329-39 [PMID: 24983844]
  21. Plant Physiol Biochem. 2008 Nov;46(11):941-50 [PMID: 18674922]
  22. FEBS Lett. 2004 Aug 27;573(1-3):110-6 [PMID: 15327984]
  23. Plant J. 2010 Aug;63(4):599-612 [PMID: 20525005]
  24. Plant Physiol. 2005 Jun;138(2):1083-96 [PMID: 15923334]
  25. Plant Cell. 2000 Mar;12(3):393-404 [PMID: 10715325]
  26. Phytopathology. 2013 Aug;103(8):822-32 [PMID: 23514263]
  27. Funct Plant Biol. 2013 Oct;40(10):1029-1047 [PMID: 32481171]
  28. Plant Cell Environ. 2013 Feb;36(2):343-55 [PMID: 22788215]
  29. Biotechniques. 1994 Jan;16(1):48-50 [PMID: 8136138]
  30. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  31. Genome Res. 2008 Sep;18(9):1509-17 [PMID: 18550803]
  32. Annu Rev Plant Biol. 2010;61:621-49 [PMID: 20441529]
  33. Bioinformatics. 2010 Apr 1;26(7):873-81 [PMID: 20147302]
  34. BMC Genomics. 2009 Apr 16;10:161 [PMID: 19371429]
  35. Plant Physiol. 2007 Sep;145(1):135-46 [PMID: 17631528]
  36. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  37. Annu Rev Phytopathol. 1997;35:111-28 [PMID: 15012517]
  38. Science. 2012 Jan 13;335(6065):207-11 [PMID: 22157085]
  39. Front Plant Sci. 2013 Mar 27;4:62 [PMID: 23543266]
  40. Curr Biol. 2007 Jul 3;17(13):1116-22 [PMID: 17583510]
  41. Trends Plant Sci. 2005 Jul;10(7):339-46 [PMID: 15953753]
  42. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8133-8 [PMID: 11390980]
  43. PLoS One. 2013 Sep 23;8(9):e73945 [PMID: 24086302]
  44. Stat Appl Genet Mol Biol. 2012 Oct 22;11(5): [PMID: 23104842]
  45. BMC Genomics. 2014 Aug 25;15:710 [PMID: 25155950]
  46. Gene. 2013 Jan 10;512(2):259-66 [PMID: 23107761]
  47. Plant Dis. 2013 Dec;97(12):1557-1562 [PMID: 30716864]
  48. Biosci Biotechnol Biochem. 2007 Jun;71(6):1387-404 [PMID: 17587669]
  49. Front Plant Sci. 2014 Jun 23;5:293 [PMID: 25002866]
  50. BMC Genomics. 2015 May 06;16:352 [PMID: 25943104]
  51. J Genet Genomics. 2009 Oct;36(10):611-9 [PMID: 19840759]
  52. Plant J. 2002 Jan;29(1):23-32 [PMID: 12060224]

MeSH Term

Disease Resistance
Fusarium
Gene Expression Profiling
Gene Expression Regulation, Plant
Plant Proteins
Plant Roots
Sequence Analysis, RNA
Glycine max

Chemicals

Plant Proteins