A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice.

Aaron W Hummel, Katherine E Wilkins, Li Wang, R Andres Cernadas, Adam J Bogdanove
Author Information
  1. Aaron W Hummel: Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA, 50011, USA.
  2. Katherine E Wilkins: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
  3. Li Wang: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
  4. R Andres Cernadas: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
  5. Adam J Bogdanove: Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA, 50011, USA.

Abstract

Xanthomonas spp. reduce crop yields and quality worldwide. During infection of their plant hosts, many strains secrete transcription activator-like (TAL) effectors, which enter the host cell nucleus and activate specific corresponding host genes at effector binding elements (EBEs) in the promoter. TAL effectors may contribute to disease by activating the expression of susceptibility genes or trigger resistance associated with the hypersensitive reaction (HR) by activating an executor resistance (R) gene. The rice bacterial leaf streak pathogen X. oryzae pv. oryzicola (Xoc) is known to suppress host resistance, and no host R gene has been identified against it, despite considerable effort. To further investigate Xoc suppression of host resistance, we conducted a screen of effectors from BLS256 and identified Tal2a as an HR elicitor in rice when delivered heterologously by a strain of the closely related rice bacterial blight pathogen X. oryzae pv. oryzae (Xoo) or by the soybean pathogen X. axonopodis pv. glycines. The HR required the Tal2a activation domain, suggesting an executor R gene. Tal2a activity was differentially distributed among geographically diverse Xoc isolates, being largely conserved among Asian isolates. We identified four genes induced by Tal2a in next-generation RNA sequencing experiments and confirmed them using quantitative real-time reverse transcription-polymerase chain reaction (qPCR). However, neither individual nor collective activation of these genes by designer TAL effectors resulted in HR. A tal2a knockout mutant of BLS256 showed virulence comparable with the wild-type, but plasmid-based overexpression of tal2a at different levels in the wild-type reduced virulence in a directly corresponding way. Overall, the results reveal that host resistance suppression by Xoc plays a critical role in pathogenesis. Further, the dose-dependent avirulence activity of Tal2a and the apparent lack of a single canonical target that accounts for HR point to a novel, activation domain-dependent mode of action, which might involve, for example, a non-coding gene or a specific pattern of activation across multiple targets.

Keywords

References

  1. Plant Cell. 1999 Sep;11(9):1665-74 [PMID: 10488234]
  2. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9807-12 [PMID: 10931960]
  3. Plant J. 2001 Jun;26(5):523-34 [PMID: 11439138]
  4. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  5. Mol Plant Microbe Interact. 2002 Jul;15(7):637-46 [PMID: 12118879]
  6. Mol Microbiol. 2002 Oct;46(1):13-23 [PMID: 12366827]
  7. Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):451-9 [PMID: 1335800]
  8. Genetics. 2004 Feb;166(2):693-706 [PMID: 15020460]
  9. Mol Plant Microbe Interact. 2004 Jul;17(7):771-9 [PMID: 15242171]
  10. Mol Plant Microbe Interact. 2004 Nov;17(11):1192-200 [PMID: 15553245]
  11. Plant J. 2005 Apr;42(2):175-87 [PMID: 15807781]
  12. Nature. 2005 Jun 23;435(7045):1122-5 [PMID: 15973413]
  13. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15383-8 [PMID: 16230639]
  14. Mol Plant Microbe Interact. 2005 Nov;18(11):1215-25 [PMID: 16353556]
  15. Mol Plant Microbe Interact. 2006 Mar;19(3):240-9 [PMID: 16570654]
  16. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10503-10508 [PMID: 16798873]
  17. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10720-5 [PMID: 17563377]
  18. Mol Plant Microbe Interact. 2007 Aug;20(8):934-43 [PMID: 17722697]
  19. Science. 2007 Oct 26;318(5850):645-8 [PMID: 17962564]
  20. Science. 2007 Oct 26;318(5850):648-51 [PMID: 17962565]
  21. Appl Environ Microbiol. 2007 Dec;73(24):8023-7 [PMID: 17981946]
  22. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  23. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  24. Plant Physiol. 2009 Aug;150(4):1697-712 [PMID: 19448036]
  25. Plant J. 2009 Sep;59(6):859-71 [PMID: 19473322]
  26. Phytopathology. 2009 Aug;99(8):996-1004 [PMID: 19594319]
  27. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20526-31 [PMID: 19910532]
  28. Science. 2009 Dec 11;326(5959):1501 [PMID: 19933106]
  29. Science. 2009 Dec 11;326(5959):1509-12 [PMID: 19933107]
  30. Bioinformatics. 2010 Feb 15;26(4):572-3 [PMID: 20031974]
  31. New Phytol. 2010 Sep;187(4):1048-57 [PMID: 20345643]
  32. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  33. Mol Plant Pathol. 2006 Sep;7(5):303-24 [PMID: 20507449]
  34. Curr Opin Plant Biol. 2010 Aug;13(4):394-401 [PMID: 20570209]
  35. Genetics. 2010 Oct;186(2):757-61 [PMID: 20660643]
  36. Plant Cell. 2010 Nov;22(11):3864-76 [PMID: 21098734]
  37. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21617-22 [PMID: 21106758]
  38. Nat Biotechnol. 2011 Feb;29(2):149-53 [PMID: 21248753]
  39. Nucleic Acids Res. 2011 Jul;39(13):5790-9 [PMID: 21421566]
  40. Nucleic Acids Res. 2011 Aug;39(14):6315-25 [PMID: 21459844]
  41. Nucleic Acids Res. 2011 Jul;39(12):e82 [PMID: 21493687]
  42. PLoS One. 2011;6(5):e19722 [PMID: 21625552]
  43. Mol Plant Microbe Interact. 2011 Sep;24(9):1102-13 [PMID: 21679014]
  44. J Bacteriol. 2011 Oct;193(19):5450-64 [PMID: 21784931]
  45. Science. 2012 Feb 10;335(6069):716-9 [PMID: 22223736]
  46. Science. 2012 Feb 10;335(6069):720-3 [PMID: 22223738]
  47. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7 [PMID: 22684630]
  48. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22 [PMID: 22693217]
  49. BioData Min. 2012 Jun 18;5(1):6 [PMID: 22709551]
  50. New Phytol. 2012 Sep;195(4):883-93 [PMID: 22747776]
  51. Stat Appl Genet Mol Biol. 2012 Oct 22;11(5):null [PMID: 23104842]
  52. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19480-5 [PMID: 23132937]
  53. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  54. New Phytol. 2013 Nov;200(3):808-19 [PMID: 23879865]
  55. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  56. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E521-9 [PMID: 24474801]
  57. Plant Cell. 2014 Jan;26(1):497-515 [PMID: 24488961]
  58. PLoS Pathog. 2014 Feb 27;10(2):e1003972 [PMID: 24586171]
  59. Mol Plant Microbe Interact. 2014 Nov;27(11):1186-98 [PMID: 25083909]
  60. New Phytol. 2014 Dec;204(4):823-32 [PMID: 25539004]
  61. Mol Plant. 2015 Feb;8(2):290-302 [PMID: 25616388]
  62. Plant Biotechnol J. 2015 Sep;13(7):993-1001 [PMID: 25644581]
  63. Front Plant Sci. 2015 Jul 21;6:536 [PMID: 26257749]
  64. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):627-31 [PMID: 8589417]
  65. Cell. 1996 Dec 27;87(7):1307-16 [PMID: 8980236]
  66. Mol Plant Microbe Interact. 1998 Aug;11(8):824-32 [PMID: 9675896]

MeSH Term

Bacterial Proteins
Disease Resistance
Geography
Oryza
Plant Diseases
Protein Domains
Transcription Activator-Like Effectors
Ubiquitin Thiolesterase
Virulence
Xanthomonas

Chemicals

Bacterial Proteins
Transcription Activator-Like Effectors
Ubiquitin Thiolesterase