Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization.

Livia Z Yanez, Jinnuo Han, Barry B Behr, Renee A Reijo Pera, David B Camarillo
Author Information
  1. Livia Z Yanez: Department of Bioengineering, Stanford University School of Engineering, Stanford, California 94305, USA.
  2. Jinnuo Han: Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  3. Barry B Behr: Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA.
  4. Renee A Reijo Pera: Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  5. David B Camarillo: Department of Bioengineering, Stanford University School of Engineering, Stanford, California 94305, USA.

Abstract

The causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity. We demonstrate that there are significant differences between the transcriptomes of viable and non-viable zygotes, especially in expression of genes important for oocyte maturation. In addition, we show that low-quality oocytes may undergo insufficient cortical granule release and zona-hardening, causing altered mechanics after fertilization. Our results suggest that embryo potential is largely determined by the quality and maturation of the oocyte before fertilization, and can be predicted through a minimally invasive mechanical measurement at the zygote stage.

References

  1. Nature. 2000 Oct 12;407(6805):693-4 [PMID: 11048707]
  2. Hum Reprod. 2000 Nov;15(11):2390-3 [PMID: 11056140]
  3. Zygote. 2001 Aug;9(3):201-10 [PMID: 11508739]
  4. EMBO J. 2002 Jun 3;21(11):2672-81 [PMID: 12032080]
  5. Biophys J. 1999 Jan;76(1 Pt 1):573-9 [PMID: 9876170]
  6. J Biomech. 1999 Feb;32(2):119-27 [PMID: 10052916]
  7. Hum Reprod Update. 1998 Nov-Dec;4(6):842-55 [PMID: 10098475]
  8. Mol Cell Biol. 1999 Oct;19(10):7237-44 [PMID: 10490658]
  9. Genes Dev. 1999 Sep 15;13(18):2375-87 [PMID: 10500095]
  10. Acta Biomater. 2005 Jan;1(1):15-30 [PMID: 16701777]
  11. Reprod Biomed Online. 2006 May;12(5):608-15 [PMID: 16790106]
  12. Fertil Steril. 2006 Jul;86(1):210-6 [PMID: 16756978]
  13. Curr Opin Genet Dev. 2006 Aug;16(4):406-12 [PMID: 16806896]
  14. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  15. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  16. Development. 2010 Mar;137(6):859-70 [PMID: 20179092]
  17. J R Soc Interface. 2010 Apr 6;7(45):687-94 [PMID: 19828504]
  18. Hum Reprod. 2010 Apr;25(4):957-68 [PMID: 20147335]
  19. Eur Biophys J. 2010 May;39(6):987-92 [PMID: 19471918]
  20. Mol Hum Reprod. 2010 Aug;16(8):570-82 [PMID: 20444854]
  21. Lab Chip. 2010 Aug 21;10(16):2154-61 [PMID: 20544113]
  22. Mol Biol Cell. 2010 Sep 15;21(18):3182-92 [PMID: 20660156]
  23. Nat Biotechnol. 2010 Oct;28(10):1115-21 [PMID: 20890283]
  24. Hum Reprod Update. 2011 Jan-Feb;17(1):34-45 [PMID: 20639518]
  25. Hum Reprod. 2011 Oct;26(10):2658-71 [PMID: 21828117]
  26. Nature. 2011 Sep 29;477(7366):606-10 [PMID: 21892189]
  27. J Cell Sci. 2002 Oct 1;115(Pt 19):3729-38 [PMID: 12235283]
  28. Hum Reprod. 2003 Jun;18(6):1294-8 [PMID: 12773462]
  29. Curr Biol. 2003 Dec 2;13(23):2110-7 [PMID: 14654002]
  30. Hum Mol Genet. 2004 Jul 15;13(14):1461-70 [PMID: 15150160]
  31. Hum Mol Genet. 2004 Oct 1;13(19):2263-78 [PMID: 15317747]
  32. IEEE Trans Nanobioscience. 2003 Dec;2(4):279-86 [PMID: 15376919]
  33. Biol Reprod. 2004 Oct;71(4):1046-54 [PMID: 15215194]
  34. Hum Cell. 2006 Nov;19(4):119-25 [PMID: 17257374]
  35. Science. 2007 Apr 20;316(5823):407-8 [PMID: 17446393]
  36. Reprod Biomed Online. 2007 Jun;14(6):700-8 [PMID: 17579982]
  37. Mol Reprod Dev. 2007 Sep;74(9):1149-56 [PMID: 17474101]
  38. Nature. 2007 Aug 16;448(7155):811-5 [PMID: 17700700]
  39. Hum Reprod. 2008 Jan;23(1):62-6 [PMID: 17977865]
  40. Anim Reprod Sci. 2008 May;105(3-4):272-82 [PMID: 17434695]
  41. Dev Biol. 2008 Apr 15;316(2):397-407 [PMID: 18342300]
  42. Am J Obstet Gynecol. 2008 Apr;198(4):455.e1-9; discussion 455.e9-11 [PMID: 18395038]
  43. Hum Reprod. 2008 May;23(5):1138-44 [PMID: 18346995]
  44. Science. 2008 Jul 4;321(5885):117-20 [PMID: 18599786]
  45. Int Rev Cell Mol Biol. 2008;268:223-90 [PMID: 18703408]
  46. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  47. Nature. 1988 Mar 31;332(6163):459-61 [PMID: 3352746]
  48. J Exp Zool. 1988 Feb;245(2):206-19 [PMID: 3367125]
  49. J Biomech Eng. 1990 Aug;112(3):263-8 [PMID: 2214707]
  50. Circ Res. 1993 Feb;72(2):239-45 [PMID: 8418981]
  51. Annu Rev Physiol. 1993;55:55-75 [PMID: 8466185]
  52. Science. 1993 May 21;260(5111):1124-7 [PMID: 7684161]
  53. Exp Cell Res. 1995 May;218(1):57-62 [PMID: 7537698]
  54. Biol Reprod. 1995 Apr;52(4):709-20 [PMID: 7779992]
  55. Hum Reprod. 1995 May;10(5):1189-93 [PMID: 7657763]
  56. Hum Reprod. 1996 Jan;11(1):172-6 [PMID: 8671181]
  57. Hum Reprod. 1997 Aug;12(8):1750-5 [PMID: 9308806]
  58. Reprod Biol Endocrinol. 2011;9:149 [PMID: 22088197]
  59. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  60. Hum Mol Genet. 2012 Jun 1;21(11):2476-84 [PMID: 22367880]
  61. PLoS One. 2012;7(10):e46609 [PMID: 23056368]
  62. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  63. Nature. 2013 Aug 29;500(7464):593-7 [PMID: 23892778]
  64. Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 [PMID: 23934149]
  65. J Assist Reprod Genet. 2014 Jun;31(6):767-80 [PMID: 24658924]
  66. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  67. Cell. 1999 Oct 29;99(3):247-57 [PMID: 10555141]
  68. J Biomech. 2000 Jan;33(1):15-22 [PMID: 10609514]

MeSH Term

Animals
Biomechanical Phenomena
Blastocyst
Elasticity
Embryo, Mammalian
Embryonic Development
Fertilization in Vitro
Gene Expression Regulation, Developmental
Gene Ontology
Gene Regulatory Networks
Humans
Mice
Microscopy, Confocal
Oocytes
Transcriptome
Viscosity
Zygote

Word Cloud

Similar Articles

Cited By