Dynamic Treatment Effects.

James J Heckman, John Eric Humphries, Gregory Veramendi
Author Information
  1. James J Heckman: University of Chicago, and the American Bar Foundation.
  2. John Eric Humphries: University of Chicago.
  3. Gregory Veramendi: Arizona State University.

Abstract

This paper develops robust models for estimating and interpreting treatment effects arising from both ordered and unordered multistage decision problems. Identification is secured through instrumental variables and/or conditional independence (matching) assumptions. We decompose treatment effects into direct effects and continuation values associated with moving to the next stage of a decision problem. Using our framework, we decompose the IV estimator, showing that IV generally does not estimate economically interpretable or policy relevant parameters in prototypical dynamic discrete choice models, unless policy variables are instruments. Continuation values are an empirically important component of estimated total treatment effects of education. We use our analysis to estimate the components of what LATE estimates in a dynamic discrete choice model.

Keywords

References

Econometrica. 2010 May 1;78(3):883-931 [PMID: 20563300]
J Econ Lit. 2010 Jun 1;48(2):356-398 [PMID: 21743749]
Econ Theory. 2015 Feb;31(1):115-151 [PMID: 25729123]
Am Econ Rev. 2011 Oct;101(6):2754-2781 [PMID: 25110355]
Am Econ Rev. 2013 Oct;103(6):2052-2086 [PMID: 24634518]
Int Econ Rev (Philadelphia). 2015 May 1;56(2):331-357 [PMID: 26494926]
Econometrica. 2010 Jan 1;78(1):377-394 [PMID: 20209119]
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4730-4 [PMID: 10200330]
J Econom. 2010 May 1;156(1):27-37 [PMID: 20440375]
J Polit Econ. 2015 Apr;123(2):413-443 [PMID: 26709315]

Grants

  1. R01 HD054702/NICHD NIH HHS
  2. R24 AG048081/NIA NIH HHS
  3. R37 HD065072/NICHD NIH HHS

Word Cloud

Similar Articles

Cited By