Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model.

Prue M Pereira-Fantini, Anushi E Rajapaksa, Regina Oakley, David G Tingay
Author Information
  1. Prue M Pereira-Fantini: Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.
  2. Anushi E Rajapaksa: Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.
  3. Regina Oakley: Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.
  4. David G Tingay: Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.

Abstract

Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.

References

  1. J Appl Physiol (1985). 2015 Apr 1;118(7):890-7 [PMID: 25635005]
  2. Neonatology. 2008;94(3):190-6 [PMID: 18832854]
  3. BMC Pediatr. 2014 Feb 15;14:43 [PMID: 24529320]
  4. Pediatr Res. 2012 Dec;72(6):593-9 [PMID: 23037872]
  5. Pediatr Res. 2010 Jan;67(1):60-5 [PMID: 19816239]
  6. Biochem Pharmacol. 2011 May 15;81(10):1255-61 [PMID: 21414303]
  7. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  8. PLoS One. 2015 Mar 13;10 (3):e0118821 [PMID: 25768100]
  9. Am J Respir Crit Care Med. 2010 May 15;181(10):1098-105 [PMID: 20133924]
  10. PLoS One. 2012;7(10):e47044 [PMID: 23056572]
  11. Pediatr Res. 2011 Apr;69(4):319-24 [PMID: 21178822]
  12. Pediatr Res. 2008 Nov;64(5):517-22 [PMID: 18596572]
  13. Respir Res. 2009 Mar 10;10:19 [PMID: 19284536]
  14. Am J Physiol Lung Cell Mol Physiol. 2011 Nov;301(5):L712-20 [PMID: 21856815]
  15. J Physiol. 2014 May 1;592(9):1993-2002 [PMID: 24591575]
  16. Am J Physiol Lung Cell Mol Physiol. 2013 Sep 15;305(6):L446-53 [PMID: 23873843]
  17. Am J Respir Crit Care Med. 2010 May 1;181(9):947-56 [PMID: 20110555]
  18. J Appl Physiol (1985). 2014 Feb 1;116(3):251-8 [PMID: 24356523]
  19. Anal Biochem. 2010 Apr 15;399(2):211-7 [PMID: 20036209]
  20. PLoS One. 2013 Jul 01;8(7):e69210 [PMID: 23840910]
  21. PLoS One. 2007 Sep 19;2(9):e898 [PMID: 17878933]
  22. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  23. Am J Physiol Lung Cell Mol Physiol. 2015 Nov 15;309(10):L1138-49 [PMID: 26408555]
  24. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  25. Pediatr Res. 2014 Apr;75(4):500-6 [PMID: 24441106]
  26. Pediatr Res. 2014 Feb;75(2):281-7 [PMID: 24232635]
  27. Genes Immun. 2005 Jun;6(4):279-84 [PMID: 15815687]
  28. Pediatr Res. 1997 Sep;42(3):348-55 [PMID: 9284276]
  29. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  30. Pediatr Res. 2014 Feb;75(2):288-94 [PMID: 24257321]
  31. Pediatr Res. 2008 Apr;63(4):388-93 [PMID: 18356744]
  32. Pediatr Res. 2011 Sep;70(3):242-6 [PMID: 21629153]
  33. PLoS One. 2015 Mar 20;10(3):e0121280 [PMID: 25794179]
  34. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  35. BMC Mol Biol. 2009 Jul 23;10:72 [PMID: 19624860]
  36. Am J Physiol Lung Cell Mol Physiol. 2011 Feb;300(2):L232-41 [PMID: 21131401]
  37. PLoS One. 2012;7(6):e39535 [PMID: 22761816]
  38. Am J Respir Cell Mol Biol. 2016 Feb;54(2):263-72 [PMID: 26186685]
  39. Am J Physiol Lung Cell Mol Physiol. 2011 Sep;301(3):L285-95 [PMID: 21665964]
  40. J Biochem Biophys Methods. 2000 Nov 20;46(1-2):69-81 [PMID: 11086195]

MeSH Term

Algorithms
Animals
Disease Models, Animal
Early Growth Response Protein 1
Female
Gene Expression Profiling
Glyceraldehyde-3-Phosphate Dehydrogenases
Interleukin-1beta
Lung Injury
Pregnancy
Premature Birth
RNA, Ribosomal, 18S
Reference Standards
Sheep
Sheep, Domestic

Chemicals

Early Growth Response Protein 1
Interleukin-1beta
RNA, Ribosomal, 18S
Glyceraldehyde-3-Phosphate Dehydrogenases

Word Cloud

Similar Articles

Cited By