A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.

Neha Rani, Tomasz J Nowakowski, Hongjun Zhou, Sirie E Godshalk, Véronique Lisi, Arnold R Kriegstein, Kenneth S Kosik
Author Information
  1. Neha Rani: Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
  2. Tomasz J Nowakowski: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  3. Hongjun Zhou: Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
  4. Sirie E Godshalk: Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
  5. Véronique Lisi: Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
  6. Arnold R Kriegstein: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  7. Kenneth S Kosik: Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. Electronic address: kosik@lifesci.ucsb.edu.

Abstract

Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified an lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA, termed LncND (neurodevelopment), is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p by LncND control the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Downregulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p overexpression. Gain of function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex.

References

  1. J Neurosci. 2013 Apr 24;33(17):7368-83 [PMID: 23616543]
  2. Cell. 2013 Jul 3;154(1):26-46 [PMID: 23827673]
  3. Dev Biol. 2011 Apr 1;352(1):40-7 [PMID: 21256837]
  4. PLoS Genet. 2006 Oct 13;2(10):e168 [PMID: 17040131]
  5. Mol Cytogenet. 2014 Aug 05;7:53 [PMID: 25126114]
  6. Neuron. 2014 Mar 19;81(6):1255-62 [PMID: 24583023]
  7. Neuron. 2015 Feb 18;85(4):683-94 [PMID: 25695268]
  8. Dev Cell. 2013 Apr 15;25(1):69-80 [PMID: 23541921]
  9. Nature. 2014 Jan 16;505(7483):344-52 [PMID: 24429633]
  10. Bioinformatics. 2011 May 15;27(10):1346-50 [PMID: 21441577]
  11. Nature. 2011 Mar 10;471(7337):216-9 [PMID: 21390129]
  12. EMBO Rep. 2012 Nov 6;13(11):971-83 [PMID: 23070366]
  13. Genes Dev. 2011 Sep 15;25(18):1915-27 [PMID: 21890647]
  14. Mol Cell. 2004 Jul 23;15(2):185-97 [PMID: 15260970]
  15. Genome Res. 2012 Sep;22(9):1775-89 [PMID: 22955988]
  16. Cell. 2005 Nov 18;123(4):631-40 [PMID: 16271387]
  17. J Neurosci. 1997 Dec 1;17(23):9212-9 [PMID: 9364068]
  18. Cereb Cortex. 2002 Jan;12(1):37-53 [PMID: 11734531]
  19. Genome Biol. 2010;11(7):R72 [PMID: 20624288]
  20. Cell. 2005 Jan 14;120(1):15-20 [PMID: 15652477]
  21. Cancer Res. 2008 Jun 15;68(12):4614-22 [PMID: 18559506]
  22. Cell Adh Migr. 2009 Jan-Mar;3(1):107-17 [PMID: 19262166]
  23. Nature. 2013 Mar 21;495(7441):333-8 [PMID: 23446348]
  24. Genome Res. 2014 Apr;24(4):616-28 [PMID: 24429298]
  25. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  26. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  27. Front Neurosci. 2011 Jun 14;5:78 [PMID: 21716644]
  28. Neuron. 1998 Nov;21(5):1031-44 [PMID: 9856459]
  29. Neuron. 2009 Nov 12;64(3):303-9 [PMID: 19914179]
  30. Nucleic Acids Res. 2010 Sep;38(16):5366-83 [PMID: 20423907]
  31. Nat Biotechnol. 2009 Mar;27(3):275-80 [PMID: 19252484]
  32. Science. 1999 Apr 30;284(5415):770-6 [PMID: 10221902]
  33. Neuron. 2008 May 22;58(4):519-31 [PMID: 18498734]
  34. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24 [PMID: 25027649]
  35. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 [PMID: 18424797]
  36. Eur J Hum Genet. 2014 Apr;22(4):471-9 [PMID: 24129437]
  37. Annu Rev Neurosci. 2006;29:77-103 [PMID: 16776580]
  38. Nat Genet. 2007 Oct;39(10):1278-84 [PMID: 17893677]
  39. RNA. 2004 Oct;10(10):1507-17 [PMID: 15383676]
  40. Genome Biol. 2010;11(8):R90 [PMID: 20799968]
  41. Nat Genet. 2007 Aug;39(8):1033-7 [PMID: 17643101]
  42. Genome Res. 2009 Jan;19(1):92-105 [PMID: 18955434]
  43. Cell. 2011 Oct 14;147(2):344-57 [PMID: 22000013]
  44. Neuron. 2000 May;26(2):395-404 [PMID: 10839358]
  45. Mol Cell. 2013 Oct 10;52(1):101-12 [PMID: 24055342]
  46. Am J Med Genet A. 2011 Nov;155A(11):2739-45 [PMID: 21990140]
  47. Brain Res. 2010 Jun 18;1338:20-35 [PMID: 20380817]
  48. Stem Cells. 2008 Mar;26(3):715-23 [PMID: 18055449]
  49. Cell. 2015 Sep 24;163(1):55-67 [PMID: 26406371]
  50. Cell. 2011 Jul 8;146(1):18-36 [PMID: 21729779]
  51. Trends Cogn Sci. 2012 Oct;16(10):497-503 [PMID: 22940578]
  52. Genes Dev. 2010 Dec 15;24(24):2754-9 [PMID: 21159816]
  53. Neuron. 2014 Jul 2;83(1):51-68 [PMID: 24991954]
  54. Mamm Genome. 2008 Aug;19(7-8):454-92 [PMID: 18839252]
  55. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):716-21 [PMID: 18184812]
  56. Neuron. 2008 Apr 10;58(1):52-64 [PMID: 18400163]
  57. BMC Genomics. 2007 Jun 12;8:166 [PMID: 17565689]
  58. Nature. 2013 Mar 21;495(7441):384-8 [PMID: 23446346]
  59. Cell. 2011 Oct 14;147(2):358-69 [PMID: 22000014]
  60. Nature. 2010 Mar 25;464(7288):554-561 [PMID: 20154730]
  61. Nat Chem Biol. 2015 Feb;11(2):107-14 [PMID: 25531890]
  62. Neuron. 2013 Oct 30;80(3):633-47 [PMID: 24183016]
  63. BMC Genomics. 2007 Feb 01;8:39 [PMID: 17270048]
  64. Cell Stem Cell. 2011 Mar 4;8(3):326-34 [PMID: 21362572]
  65. J Neurosci. 1987 Oct;7(10):3142-53 [PMID: 2444675]
  66. Nat Neurosci. 2010 Jun;13(6):690-9 [PMID: 20436478]
  67. Nat Rev Neurosci. 2006 Feb;7(2):93-102 [PMID: 16429119]
  68. J Neural Transm Suppl. 2007;(72):17-28 [PMID: 17982873]
  69. Annu Rev Neurosci. 2002;25:471-90 [PMID: 12052917]
  70. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  71. Mol Cell. 2014 Feb 6;53(3):506-14 [PMID: 24440503]
  72. Neuron. 1994 Apr;12 (4):895-908 [PMID: 8161459]
  73. Cell Death Differ. 2013 Nov;20(11):1558-68 [PMID: 23933812]
  74. Curr Biol. 2010 Oct 12;20(19):R858-61 [PMID: 20937476]
  75. RNA. 2010 May;16(5):1032-9 [PMID: 20348442]
  76. Nat Protoc. 2014 Oct;9(10):2329-40 [PMID: 25188634]
  77. Nature. 2009 Aug 6;460(7256):705-10 [PMID: 19578358]
  78. Oncogene. 2003 Sep 11;22(39):8031-41 [PMID: 12970751]
  79. Glia. 2003 Jul;43(1):37-43 [PMID: 12761864]
  80. Clin Genet. 2013 Jul;84(1):31-6 [PMID: 23061379]
  81. Oncogene. 2009 Mar 12;28(10 ):1385-92 [PMID: 19137007]

Grants

  1. R01 NS075998/NINDS NIH HHS
  2. R35 NS097305/NINDS NIH HHS

MeSH Term

Animals
Cell Proliferation
Cells, Cultured
Cerebral Cortex
Cerebral Ventricles
Ependymoglial Cells
Humans
Lateral Ventricles
Mice
MicroRNAs
Neural Stem Cells
Neurogenesis
PAX6 Transcription Factor
Primates
RNA, Long Noncoding
Receptors, Notch
Signal Transduction

Chemicals

MicroRNAs
MIRN143 microRNA, mouse
PAX6 Transcription Factor
RNA, Long Noncoding
Receptors, Notch