Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.

Anna Sahakyan, Rachel Kim, Constantinos Chronis, Shan Sabri, Giancarlo Bonora, Thorold W Theunissen, Edward Kuoy, Justin Langerman, Amander T Clark, Rudolf Jaenisch, Kathrin Plath
Author Information
  1. Anna Sahakyan: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  2. Rachel Kim: Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  3. Constantinos Chronis: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  4. Shan Sabri: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  5. Giancarlo Bonora: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  6. Thorold W Theunissen: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  7. Edward Kuoy: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  8. Justin Langerman: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  9. Amander T Clark: Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  10. Rudolf Jaenisch: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  11. Kathrin Plath: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address: kplath@mednet.ucla.edu.

Abstract

Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (X) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XX intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets X abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.

Keywords

References

  1. Development. 2015 Sep 15;142(18):3090-9 [PMID: 26395138]
  2. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 [PMID: 24623855]
  3. Nature. 2011 Apr 21;472(7343):370-4 [PMID: 21471966]
  4. Cell Stem Cell. 2013 Dec 5;13(6):663-75 [PMID: 24315441]
  5. Cell. 2014 Sep 11;158(6):1254-1269 [PMID: 25215486]
  6. Brain Dev. 2001 Dec;23 Suppl 1:S138-43 [PMID: 11738860]
  7. Cell Stem Cell. 2010 Sep 3;7(3):329-42 [PMID: 20727844]
  8. Nucleic Acids Res. 2005 Oct 13;33(18):5868-77 [PMID: 16224102]
  9. Science. 2003 Apr 4;300(5616):131-5 [PMID: 12649488]
  10. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4820-5 [PMID: 18339803]
  11. Cell Stem Cell. 2012 May 4;10(5):595-609 [PMID: 22560080]
  12. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7 [PMID: 20442331]
  13. Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 [PMID: 23934149]
  14. Nature. 2013 Dec 12;504(7479):282-6 [PMID: 24172903]
  15. Cell Stem Cell. 2012 May 4;10(5):620-34 [PMID: 22560082]
  16. Nature. 2014 Jul 31;511(7511):611-5 [PMID: 25079558]
  17. Stem Cells. 2012 Jan;30(1):48-54 [PMID: 21997775]
  18. Cell Stem Cell. 2009 Jun 5;4(6):487-92 [PMID: 19497275]
  19. Biol Sex Differ. 2015 Dec 30;6:35 [PMID: 26719789]
  20. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4709-14 [PMID: 18339804]
  21. Cell. 2016 May 5;165(4):1012-26 [PMID: 27062923]
  22. Genome Res. 2011 Oct;21(10):1592-600 [PMID: 21862626]
  23. Cell Stem Cell. 2016 Oct 6;19(4):502-515 [PMID: 27424783]
  24. Curr Opin Genet Dev. 2013 Apr;23(2):109-15 [PMID: 23465885]
  25. Cell Stem Cell. 2016 Mar 3;18(3):323-329 [PMID: 26853856]
  26. Cell Stem Cell. 2014 Oct 2;15(4):410-415 [PMID: 25280217]
  27. Cell Stem Cell. 2015 May 7;16(5):533-46 [PMID: 25921272]
  28. Cell Stem Cell. 2014 Oct 2;15(4):471-487 [PMID: 25090446]
  29. Cell. 2016 May 5;165(4):777-9 [PMID: 27153491]

Grants

  1. R01 MH104610/NIMH NIH HHS
  2. F31 GM115122/NIGMS NIH HHS
  3. R01 HD079546/NICHD NIH HHS
  4. UL1 TR000124/NCATS NIH HHS
  5. R37 HD045022/NICHD NIH HHS
  6. 098889/Z/12/Z/Wellcome Trust
  7. P01 GM099134/NIGMS NIH HHS
  8. R01 NS088538/NINDS NIH HHS
  9. R01 HD045022/NICHD NIH HHS
  10. /Wellcome Trust
  11. R01 CA084198/NCI NIH HHS

MeSH Term

Base Sequence
Blastocyst
Cell Differentiation
Cells, Cultured
Chromosomes, Human, X
DNA Methylation
Female
Histones
Human Embryonic Stem Cells
Humans
Lysine
Methylation
Pluripotent Stem Cells
RNA, Long Noncoding
X Chromosome Inactivation

Chemicals

Histones
RNA, Long Noncoding
XIST non-coding RNA
Lysine