Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.
Anna Sahakyan, Rachel Kim, Constantinos Chronis, Shan Sabri, Giancarlo Bonora, Thorold W Theunissen, Edward Kuoy, Justin Langerman, Amander T Clark, Rudolf Jaenisch, Kathrin Plath
Author Information
Anna Sahakyan: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Rachel Kim: Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Constantinos Chronis: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Shan Sabri: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Giancarlo Bonora: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Thorold W Theunissen: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
Edward Kuoy: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Justin Langerman: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Amander T Clark: Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Rudolf Jaenisch: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Kathrin Plath: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address: kplath@mednet.ucla.edu.
Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (X) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XX intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets X abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.