Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas.

Debarshi Mustafi, Brian M Kevany, Xiaodong Bai, Marcin Golczak, Mark D Adams, Anthony Wynshaw-Boris, Krzysztof Palczewski
Author Information
  1. Debarshi Mustafi: Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology.
  2. Brian M Kevany: Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology.
  3. Xiaodong Bai: Center for RNA Molecular Biology.
  4. Marcin Golczak: Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology.
  5. Mark D Adams: J. Craig Venter Institute, La Jolla, CA, USA.
  6. Anthony Wynshaw-Boris: Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
  7. Krzysztof Palczewski: Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology.

Abstract

A defined set of genetic instructions encodes functionality in complex organisms. Delineating these unique genetic signatures is essential to understanding the formation and functionality of specialized tissues. Vision, one of the five central senses of perception, is initiated by the retina and has evolved over time to produce rod and cone photoreceptors that vary in a species-specific manner, and in some cases by geographical region resulting in higher order visual acuity in humans. RNA-sequencing and use of existing and de novo transcriptome assemblies allowed ocular transcriptome mapping from a diverse set of rodent and primate species. Global genomic refinements along with systems-based comparative and co-expression analyses of these transcriptome maps identified gene modules that correlated with specific features of rod versus cone retinal cellular composition. Organization of the ocular transcriptome demonstrated herein defines the molecular basis of photoreceptor architecture and functionality, providing a new paradigm for neurogenetic analyses of the mammalian retina in health and disease.

References

  1. Methods Mol Biol. 2010;652:229-45 [PMID: 20552432]
  2. FASEB J. 2015 Jan;29(1):216-26 [PMID: 25326538]
  3. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  4. Nat Methods. 2010 Nov;7(11):909-12 [PMID: 20935650]
  5. Mol Cell Neurosci. 2004 Dec;27(4):477-88 [PMID: 15555925]
  6. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E81-90 [PMID: 26699487]
  7. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  8. Stem Cell Reports. 2016 Jan 12;6(1):64-73 [PMID: 26771354]
  9. Science. 2002 Aug 30;297(5586):1551-5 [PMID: 12202830]
  10. Cell. 2014 Feb 13;156(4):836-43 [PMID: 24486104]
  11. PLoS Genet. 2011 Mar;7(3):e1001331 [PMID: 21423666]
  12. Nucleic Acids Res. 2010 Jan;38(Database issue):D492-6 [PMID: 19854944]
  13. Bioinformatics. 2004 Sep 1;20(13):1993-2003 [PMID: 15044247]
  14. Vet Pathol. 2015 May;52(3):580-95 [PMID: 25161209]
  15. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  16. Nucleic Acids Res. 2008 Jun;36(10):3420-35 [PMID: 18445632]
  17. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  18. Cell Stem Cell. 2011 Aug 5;9(2):91-2 [PMID: 21816358]
  19. Cell. 2013 Aug 1;154(3):691-703 [PMID: 23890820]
  20. Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 [PMID: 19920124]
  21. J Clin Invest. 2012 Aug;122(8):2989-3001 [PMID: 22797304]
  22. Nature. 2011 Sep 14;477(7364):289-94 [PMID: 21921910]
  23. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17973-8 [PMID: 17101986]
  24. Development. 2015 Oct 1;142(19):3263-73 [PMID: 26443631]
  25. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  26. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):736-41 [PMID: 9892703]
  27. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  28. Mol Cell Biol. 2015 Aug;35(15):2583-96 [PMID: 25986607]
  29. BMC Bioinformatics. 2007 Jan 24;8:22 [PMID: 17250769]
  30. Dis Model Mech. 2015 Feb;8(2):109-29 [PMID: 25650393]
  31. Gene Expr Patterns. 2006 Mar;6(3):285-93 [PMID: 16378758]
  32. Nat Rev Neurosci. 2007 Dec;8(12):960-76 [PMID: 18026166]
  33. Cell. 2013 May 9;153(4):910-8 [PMID: 23643243]
  34. Development. 2015 May 15;142(10):1850-9 [PMID: 25968316]
  35. Nat Rev Genet. 2010 Apr;11(4):273-84 [PMID: 20212494]
  36. Dev Biol. 1997 Feb 15;182(2):299-313 [PMID: 9070329]
  37. PLoS Biol. 2004 May;2(5):E132 [PMID: 15138501]
  38. J Comp Neurol. 1990 Feb 22;292(4):497-523 [PMID: 2324310]
  39. FASEB J. 2011 Sep;25(9):3157-76 [PMID: 21659555]
  40. J Biol Chem. 2010 Mar 19;285(12):9180-9 [PMID: 20071344]
  41. Genome Res. 2009 Jun;19(6):1117-23 [PMID: 19251739]
  42. J Neurosci. 2001 Dec 1;21(23):9175-84 [PMID: 11717351]
  43. FASEB J. 2013 Nov;27(11):4585-95 [PMID: 23913857]
  44. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  45. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9 [PMID: 25413365]
  46. Nature. 2005 Sep 1;437(7055):69-87 [PMID: 16136131]
  47. Nat Rev Genet. 2006 Sep;7(9):693-702 [PMID: 16921347]
  48. Development. 2013 Nov;140(21):4335-46 [PMID: 24089469]
  49. J Clin Invest. 2013 Dec;123(12):5119-34 [PMID: 24231350]
  50. Prog Retin Eye Res. 2009 Jul;28(4):289-302 [PMID: 19501669]
  51. Nat Neurosci. 2012 Jan 22;15(3):487-95, S1-2 [PMID: 22267162]
  52. Nat Biotechnol. 2013 Aug;31(8):681-3 [PMID: 23929336]
  53. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  54. Nature. 2011 Oct 19;478(7369):343-8 [PMID: 22012392]
  55. Science. 2005 Sep 16;309(5742):1850-4 [PMID: 16141373]
  56. Neuron. 2005 Nov 3;48(3):387-401 [PMID: 16269358]
  57. J Comp Neurol. 2008 Oct 10;510(5):525-38 [PMID: 18680202]
  58. Science. 2013 Jan 25;339(6118):456-60 [PMID: 23258410]
  59. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  60. Genomics. 2003 Aug;82(2):245-9 [PMID: 12837274]
  61. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 [PMID: 24259432]
  62. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6544-9 [PMID: 20308572]
  63. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13030-5 [PMID: 14557539]
  64. Nat Rev Genet. 2013 Sep;14(9):645-60 [PMID: 23949544]
  65. Hum Mol Genet. 2013 Aug 1;22(15):2992-3002 [PMID: 23562822]
  66. Hum Mol Genet. 2014 Aug 1;23(15):4001-14 [PMID: 24634144]
  67. Science. 2012 Dec 21;338(6114):1593-9 [PMID: 23258891]
  68. J Biol Chem. 2005 May 13;280(19):18822-32 [PMID: 15755727]
  69. BMC Genomics. 2012 Aug 01;13:361 [PMID: 22853326]
  70. Nat Genet. 2001 Dec;29(4):447-52 [PMID: 11694879]
  71. Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 [PMID: 25428369]
  72. Bioinformatics. 2009 Nov 1;25(21):2872-7 [PMID: 19528083]
  73. BMC Genomics. 2012 May 30;13:206 [PMID: 22646658]
  74. Vision Res. 2008 Dec;48(27):2723-31 [PMID: 18824014]
  75. Nat Commun. 2014 Jun 10;5:4047 [PMID: 24915161]
  76. Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81 [PMID: 25428374]
  77. BMC Genomics. 2013 Jul 18;14:486 [PMID: 23865674]
  78. Science. 2002 May 31;296(5573):1661-71 [PMID: 12040188]
  79. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  80. Genome Biol. 2016 Feb 17;17:29 [PMID: 26887813]
  81. Development. 2015 Oct 1;142(19):3294-306 [PMID: 26443633]
  82. Nature. 1968 Aug 24;219(5156):800-7 [PMID: 4876934]
  83. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]

Grants

  1. R24 EY021126/NEI NIH HHS
  2. U01 EY025451/NEI NIH HHS

MeSH Term

Animals
Gene Expression Profiling
Humans
Macaca fascicularis
Mammals
Mice
Rats
Retinal Cone Photoreceptor Cells
Retinal Rod Photoreceptor Cells
Sequence Analysis, RNA
Transcriptome