Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer.
Woosung Chung, Hye Hyeon Eum, Hae-Ock Lee, Kyung-Min Lee, Han-Byoel Lee, Kyu-Tae Kim, Han Suk Ryu, Sangmin Kim, Jeong Eon Lee, Yeon Hee Park, Zhengyan Kan, Wonshik Han, Woong-Yang Park
Author Information
Woosung Chung: Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
Hye Hyeon Eum: Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
Hae-Ock Lee: Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
Kyung-Min Lee: Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
Han-Byoel Lee: Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
Kyu-Tae Kim: Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
Han Suk Ryu: Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea.
Sangmin Kim: Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
Jeong Eon Lee: Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
Yeon Hee Park: Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Korea.
Zhengyan Kan: Oncology Research, Pfizer Inc., San Diego, California 92121, USA.
Wonshik Han: Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
Woong-Yang Park: Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea. ORCID
中文译文
English
Single-cell transcriptome profiling of tumour tissue isolates allows the characterization of heterogeneous tumour cells along with neighbouring stromal and immune cells. Here we adopt this powerful approach to breast cancer and analyse 515 cells from 11 patients. Inferred copy number variations from the single-cell RNA-seq data separate carcinoma cells from non-cancer cells. At a single-cell resolution, carcinoma cells display common signatures within the tumour as well as intratumoral heterogeneity regarding breast cancer subtype and crucial cancer-related pathways. Most of the non-cancer cells are immune cells, with three distinct clusters of T lymphocytes, B lymphocytes and macrophages. T lymphocytes and macrophages both display immunosuppressive characteristics: T cells with a regulatory or an exhausted phenotype and macrophages with an M2 phenotype. These results illustrate that the breast cancer transcriptome has a wide range of intratumoral heterogeneity, which is shaped by the tumour cells and immune cells in the surrounding microenvironment.
Nat Med. 2008 May;14(5):518-27
[PMID: 18438415 ]
J Clin Oncol. 1999 May;17(5):1474-81
[PMID: 10334533 ]
Breast Cancer Res. 2013;15(4):210
[PMID: 24041156 ]
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2639-44
[PMID: 12604779 ]
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
[PMID: 16199517 ]
Ann Oncol. 2015 Feb;26(2):259-71
[PMID: 25214542 ]
J Clin Invest. 2011 Jul;121(7):2750-67
[PMID: 21633166 ]
Genome Biol. 2006;7(7):R54
[PMID: 16836768 ]
J Immunother Cancer. 2016 Jul 19;4:40
[PMID: 27437104 ]
Bioinformatics. 2012 Feb 1;28(3):423-5
[PMID: 22155870 ]
BMC Bioinformatics. 2011 Aug 04;12:323
[PMID: 21816040 ]
Nat Protoc. 2015 Mar;10(3):442-58
[PMID: 25675209 ]
Nat Commun. 2013;4:2612
[PMID: 24113773 ]
Nature. 2014 Aug 14;512(7513):155-60
[PMID: 25079324 ]
Nat Rev Immunol. 2015 Jan;15(1):45-56
[PMID: 25534622 ]
Cancer Res. 2001 Aug 15;61(16):5979-84
[PMID: 11507038 ]
Front Immunol. 2015 Jun 26;6:310
[PMID: 26167163 ]
Science. 2014 Jun 20;344(6190):1396-401
[PMID: 24925914 ]
Bioinformatics. 2013 Jan 1;29(1):15-21
[PMID: 23104886 ]
Immunity. 2014 Jul 17;41(1):49-61
[PMID: 25035953 ]
J Clin Invest. 2011 Oct;121(10):3797-803
[PMID: 21965336 ]
Breast Cancer Res. 2008;10(4):R65
[PMID: 18662380 ]
Cancer Cell. 2010 Feb 17;17(2):135-47
[PMID: 20138012 ]
Genome Biol. 2015 May 22;16:107
[PMID: 25994018 ]
Cell. 2015 May 21;161(5):1202-14
[PMID: 26000488 ]
J Clin Oncol. 2008 Feb 10;26(5):721-8
[PMID: 18258979 ]
Sci Transl Med. 2015 Jul 15;7(296):296fs29
[PMID: 26180099 ]
Clin Cancer Res. 2009 Apr 1;15(7):2302-10
[PMID: 19318481 ]
Nat Immunol. 2013 Oct;14(10):1014-22
[PMID: 24048123 ]
Science. 2006 Sep 29;313(5795):1960-4
[PMID: 17008531 ]
J Clin Invest. 2006 Aug;116(8):2132-2141
[PMID: 16862213 ]
Nat Genet. 2011 May;43(5):491-8
[PMID: 21478889 ]
Mol Cancer Res. 2009 Apr;7(4):511-22
[PMID: 19372580 ]
Bioinformatics. 2012 Jun 1;28(11):1530-2
[PMID: 22539670 ]
Nat Methods. 2014 Jan;11(1):41-6
[PMID: 24141493 ]
Cancer Cell. 2014 Dec 8;26(6):923-37
[PMID: 25465800 ]
Genome Res. 2015 Oct;25(10):1499-507
[PMID: 26430160 ]
Nature. 2012 Apr 18;486(7403):346-52
[PMID: 22522925 ]
BMC Bioinformatics. 2013 Jan 16;14:7
[PMID: 23323831 ]
Cancer Inform. 2012;11:147-56
[PMID: 22872785 ]
Nature. 2012 Oct 4;490(7418):61-70
[PMID: 23000897 ]
J Natl Cancer Inst. 2012 Feb 22;104(4):311-25
[PMID: 22262870 ]
Cell Death Dis. 2015 Jun 18;6:e1792
[PMID: 26086965 ]
Genome Biol. 2015 Jun 19;16:127
[PMID: 26084335 ]
Immunity. 2013 Oct 17;39(4):782-95
[PMID: 24138885 ]
BMC Bioinformatics. 2010 Jul 02;11:367
[PMID: 20598126 ]
Nature. 2012 Jun 20;486(7403):405-9
[PMID: 22722202 ]
Bioinformatics. 2009 Jul 15;25(14):1754-60
[PMID: 19451168 ]
BMC Genomics. 2014 Nov 21;15:1008
[PMID: 25412710 ]
J Immunol. 2006 Nov 15;177(10):7303-11
[PMID: 17082649 ]
Mol Cell Biol. 1998 Aug;18(8):4499-508
[PMID: 9671459 ]
Annu Rev Med. 2011;62:233-47
[PMID: 20887199 ]
Science. 2016 Apr 8;352(6282):189-96
[PMID: 27124452 ]
Clin Cancer Res. 2008 Aug 15;14(16):5158-65
[PMID: 18698033 ]
J Clin Oncol. 2008 Feb 10;26(5):729-35
[PMID: 18258980 ]
J Clin Oncol. 2015 Jun 10;33(17 ):1974-82
[PMID: 25605845 ]
Nat Genet. 1999 Sep;23(1):41-6
[PMID: 10471496 ]
Breast Cancer Res Treat. 2012 Apr;132(2):545-53
[PMID: 21671016 ]
Nat Biotechnol. 2013 Mar;31(3):213-9
[PMID: 23396013 ]
Nature. 2015 Oct 1;526(7571):131-5
[PMID: 26416748 ]
B-Lymphocytes
Breast Neoplasms
Carcinoma, Ductal, Breast
DNA Copy Number Variations
Female
Gene Expression Profiling
Humans
Lymph Nodes
Lymphocytes, Tumor-Infiltrating
Macrophages
Receptor, ErbB-2
Receptors, Estrogen
Receptors, Progesterone
Sequence Analysis, RNA
Single-Cell Analysis
T-Lymphocytes
Triple Negative Breast Neoplasms
Tumor Microenvironment
Exome Sequencing
Receptors, Estrogen
Receptors, Progesterone
ERBB2 protein, human
Receptor, ErbB-2