Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

Raphael Lis, Charles C Karrasch, Michael G Poulos, Balvir Kunar, David Redmond, Jose G Barcia Duran, Chaitanya R Badwe, William Schachterle, Michael Ginsberg, Jenny Xiang, Arash Rafii Tabrizi, Koji Shido, Zev Rosenwaks, Olivier Elemento, Nancy A Speck, Jason M Butler, Joseph M Scandura, Shahin Rafii
Author Information
  1. Raphael Lis: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  2. Charles C Karrasch: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  3. Michael G Poulos: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  4. Balvir Kunar: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  5. David Redmond: Institute for Computational Biomedicine &Institute for Precision Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  6. Jose G Barcia Duran: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  7. Chaitanya R Badwe: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  8. William Schachterle: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  9. Michael Ginsberg: Angiocrine Bioscience, San Diego, California 92130, USA.
  10. Jenny Xiang: Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10065, USA.
  11. Arash Rafii Tabrizi: Stem Cell and Microenvironment Laboratory, Department of Obstetrics and Gynecology, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, PO box 24144, Doha, Qatar.
  12. Koji Shido: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  13. Zev Rosenwaks: Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, New York 10065, USA.
  14. Olivier Elemento: Institute for Computational Biomedicine &Institute for Precision Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  15. Nancy A Speck: Abramson Family Cancer Research Institute, Institute for Regenerative Medicine and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
  16. Jason M Butler: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.
  17. Joseph M Scandura: Department of Medicine, Hematology-Oncology, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, New York 10065, USA.
  18. Shahin Rafii: Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA.

Abstract

Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.

References

  1. Stem Cells Transl Med. 2017 Feb;6(2):482-489 [PMID: 28191767]
  2. Exp Hematol. 2005 Sep;33(9):1029-40 [PMID: 16140151]
  3. Nat Biotechnol. 2016 Nov;34(11):1168-1179 [PMID: 27748754]
  4. Stem Cells. 2014 Nov;32(11):2923-38 [PMID: 25175072]
  5. Blood. 2012 Aug 9;120(6):1344-7 [PMID: 22709690]
  6. Stem Cells. 2014 Jan;32(1):177-90 [PMID: 23963623]
  7. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19288-93 [PMID: 19036927]
  8. Nat Commun. 2016 Mar 08;7:10784 [PMID: 26952187]
  9. Nat Commun. 2014 Jul 14;5:4372 [PMID: 25019369]
  10. Cell. 2014 Nov 20;159(5):1070-85 [PMID: 25416946]
  11. Nature. 2010 Nov 11;468(7321):310-5 [PMID: 21068842]
  12. Nature. 2014 Jan 16;505(7483):327-34 [PMID: 24429631]
  13. Nat Immunol. 2002 Apr;3(4):323-8 [PMID: 11919568]
  14. Nat Med. 2014 Aug;20(8):833-46 [PMID: 25100529]
  15. Nat Cell Biol. 2010 Nov;12(11):1046-56 [PMID: 20972423]
  16. Blood. 1995 Nov 1;86(9):3353-63 [PMID: 7579438]
  17. Blood. 2004 Apr 1;103(7):2522-9 [PMID: 14630789]
  18. Cell Rep. 2014 Dec 11;9(5):1871-84 [PMID: 25466247]
  19. Nature. 2014 Jul 17;511(7509):312-8 [PMID: 25030167]
  20. Genes Dev. 2014 Dec 1;28(23):2597-612 [PMID: 25395663]
  21. Blood. 1994 Jul 1;84(1):10-9 [PMID: 7517203]
  22. Cell Stem Cell. 2013 Oct 3;13(4):459-70 [PMID: 24094326]
  23. Stem Cell Res. 2012 Mar;8(2):300-11 [PMID: 22000550]
  24. Cell Stem Cell. 2008 Dec 4;3(6):625-36 [PMID: 19041779]
  25. Nat Biotechnol. 2013 May;31(5):416-8 [PMID: 23657396]
  26. Genome Med. 2016 Jul 27;8(1):80 [PMID: 27460926]
  27. Nature. 2014 Aug 21;512(7514):314-8 [PMID: 25119043]
  28. Adv Exp Med Biol. 2017;962:47-64 [PMID: 28299650]
  29. Nature. 2010 Mar 4;464(7285):116-20 [PMID: 20154729]
  30. Blood. 2013 Jan 31;121(5):770-80 [PMID: 23169780]
  31. Nat Cell Biol. 2016 Nov;18(11):1111-1117 [PMID: 27723718]
  32. Nature. 2016 Jan 21;529(7586):316-25 [PMID: 26791722]
  33. Methods Mol Biol. 2012;904:221-33 [PMID: 22890935]
  34. FEBS Lett. 2016 Nov;590(22):4126-4143 [PMID: 27391301]
  35. Cell Mol Life Sci. 2016 Apr;73(8):1547-67 [PMID: 26849156]
  36. Cell. 2014 Apr 24;157(3):549-64 [PMID: 24766805]
  37. Nature. 2016 May 18;533(7604):487-92 [PMID: 27225119]
  38. Cell Stem Cell. 2013 Aug 1;13(2):205-18 [PMID: 23770078]
  39. Cell Stem Cell. 2010 Mar 5;6(3):251-64 [PMID: 20207228]
  40. Blood. 2015 Mar 19;125(12):1890-900 [PMID: 25645357]
  41. J Immunol Methods. 1999 Jun 24;226(1-2):29-41 [PMID: 10410969]
  42. Blood. 2012 May 24;119(21):4823-7 [PMID: 22415753]

Grants

  1. R01 HL133021/NHLBI NIH HHS
  2. R01 CA204308/NCI NIH HHS
  3. HL128158/NIH HHS
  4. U01 HL099997/NHLBI NIH HHS
  5. R01 HL115128/NHLBI NIH HHS
  6. R01 HL091724/NHLBI NIH HHS
  7. HL099997/NIH HHS
  8. HL133021/NIH HHS
  9. U54 CA163167/NCI NIH HHS
  10. R01 HL128158/NHLBI NIH HHS
  11. R01 DK095039/NIDDK NIH HHS
  12. HL119872/NIH HHS
  13. R01 HL097797/NHLBI NIH HHS
  14. NIH-R01 HL091724/NIH HHS
  15. T32 HD060600/NICHD NIH HHS
  16. R01 HL119872/NHLBI NIH HHS
  17. HL115128/NIH HHS

MeSH Term

Adaptive Immunity
Aging
Animals
Cell Differentiation
Cell Line
Cell Lineage
Cell Self Renewal
Cellular Reprogramming
Clone Cells
Core Binding Factor Alpha 2 Subunit
DNA-Binding Proteins
Endothelial Cells
Endothelium
Hematopoiesis
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells
Humans
Male
Mice
Mice, Inbred C57BL
Proto-Oncogene Proteins
Proto-Oncogene Proteins c-fos
T-Lymphocytes
Trans-Activators
Transcription Factors
Transcriptome

Chemicals

Core Binding Factor Alpha 2 Subunit
DNA-Binding Proteins
FOSB protein, human
GFI1 protein, human
Proto-Oncogene Proteins
Proto-Oncogene Proteins c-fos
RUNX1 protein, human
Trans-Activators
Transcription Factors
proto-oncogene protein Spi-1