Co-overexpression of the Constitutively Active Form of OsbZIP46 and ABA-Activated Protein Kinase SAPK6 Improves Drought and Temperature Stress Resistance in Rice.

Yu Chang, Ba Hoanh Nguyen, Yongjun Xie, Benze Xiao, Ning Tang, Wenliu Zhu, Tongmin Mou, Lizhong Xiong
Author Information
  1. Yu Chang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  2. Ba Hoanh Nguyen: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  3. Yongjun Xie: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  4. Benze Xiao: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  5. Ning Tang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  6. Wenliu Zhu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  7. Tongmin Mou: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.
  8. Lizhong Xiong: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China.

Abstract

Drought is one of the major abiotic stresses threatening rice () production worldwide. Drought resistance is controlled by multiple genes, and therefore, a multi-gene genetic engineering strategy is theoretically useful for improving drought resistance. However, the experimental evidence for such a strategy is still lacking. In this study, a few drought-responsive genes from rice were assembled by a multiple-round site-specific assembly system, and the constructs were introduced into the rice cultivar KY131 via -mediated transformation. The transgenic lines of the multi-gene and corresponding single-gene constructs were pre-evaluated for drought resistance. We found that the co-overexpression of two genes, encoding a constitutively active form of a bZIP transcription factor () and a protein kinase () involved in the abscisic acid signaling pathway, showed significantly enhanced drought resistance compared with the single-gene transgenic lines and the negative transgenic plants. Single-copy lines of this bi-gene combination (named XL22) and the corresponding single-gene lines were further evaluated for drought resistance in the field using agronomical traits. The results showed that XL22 exhibited greater yield, biomass, spikelet number, and grain number under moderate drought stress conditions. The seedling survival rate of XL22 and the single-gene overexpressors after drought stress treatment also supported the drought resistance results. Furthermore, expression profiling by RNA-Seq revealed that many genes involved in the stress response were specifically up-regulated in the drought-treated XL22 lines and some of the stress-related genes activated in CA1-OE and SAPK6-OE were distinct, which could partially explain the different performances of these lines with respect to drought resistance. In addition, the XL22 seedlings showed improved tolerance to heat and cold stresses. Our results demonstrate that the multi-gene assembly in an appropriate combination may be a promising approach in the genetic improvement of drought resistance.

Keywords

References

  1. Plant J. 2004 Jul;39(2):219-36 [PMID: 15225287]
  2. Plant J. 2011 Sep;67(5):885-94 [PMID: 21575091]
  3. Plant Sci. 2014 Feb;215-216:48-58 [PMID: 24388514]
  4. Rice (N Y). 2015 Dec;8(1):28 [PMID: 26362328]
  5. Plant Physiol. 2016 Aug;171(4):2810-25 [PMID: 27325665]
  6. Front Plant Sci. 2015 Feb 18;6:84 [PMID: 25741357]
  7. Nature. 2016 Jan 7;529(7584):84-7 [PMID: 26738594]
  8. Plant Physiol. 2002 Feb;128(2):682-95 [PMID: 11842171]
  9. Plant J. 2005 Dec;44(6):939-49 [PMID: 16359387]
  10. BMC Genet. 2016 Jan 27;17:30 [PMID: 26818269]
  11. Science. 1982 Oct 29;218(4571):443-8 [PMID: 17808529]
  12. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  13. Plant Physiol. 2012 Sep;160(1):379-95 [PMID: 22829320]
  14. Plant Physiol. 2010 May;153(1):41-51 [PMID: 20200068]
  15. Annu Rev Plant Biol. 2014;65:715-41 [PMID: 24313844]
  16. PLoS One. 2016 Jan 29;11(1):e0147625 [PMID: 26824246]
  17. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  18. Front Plant Sci. 2016 Oct 27;7:1598 [PMID: 27833624]
  19. Plant Cell. 2016 Jul 28;: [PMID: 27468891]
  20. Plant Cell Physiol. 2009 Dec;50(12 ):2123-32 [PMID: 19880399]
  21. Science. 2009 May 22;324(5930):1064-8 [PMID: 19407143]
  22. Nat Biotechnol. 2015 Sep;33(9):996-1003 [PMID: 26280413]
  23. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  24. Plant J. 2011 Oct;68(2):302-13 [PMID: 21707801]
  25. J Biol Chem. 2006 Feb 24;281(8):5310-8 [PMID: 16365038]
  26. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  27. Plant Cell Physiol. 2010 Nov;51(11):1821-39 [PMID: 20980270]
  28. Nat Struct Mol Biol. 2009 Dec;16(12):1230-6 [PMID: 19893533]
  29. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  30. Plant Mol Biol. 2013 Nov;83(4-5):391-404 [PMID: 23839253]
  31. Plant Mol Biol. 2007 Jan;63(2):151-69 [PMID: 16977424]
  32. Curr Genomics. 2016 Aug;17 (4):330-42 [PMID: 27499682]
  33. Nat Genet. 2005 Mar;37(3):311-9 [PMID: 15731760]
  34. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17588-93 [PMID: 19805022]
  35. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17306-11 [PMID: 15561775]
  36. BMC Plant Biol. 2008 Apr 28;8:49 [PMID: 18442365]
  37. Plant Physiol. 2002 Oct;130(2):837-46 [PMID: 12376648]
  38. Plant Physiol. 2008 Dec;148(4):1938-52 [PMID: 18931143]
  39. Plant Cell Physiol. 2008 Feb;49(2):226-41 [PMID: 18178965]
  40. Nucleic Acids Res. 2000 Sep 15;28(18):3442-4 [PMID: 10982861]
  41. Plant Cell. 2002 Dec;14(12):3177-89 [PMID: 12468735]
  42. Plant J. 2004 Oct;40(1):75-87 [PMID: 15361142]
  43. Mol Plant. 2013 Nov;6(6):1975-83 [PMID: 23956122]
  44. Theor Appl Genet. 2007 Jun;115(1):35-46 [PMID: 17426956]
  45. Plant Physiol. 1981 Jan;67(1):26-9 [PMID: 16661627]
  46. J Exp Bot. 2013 Jan;64(1):109-17 [PMID: 23202133]
  47. Biomed Res Int. 2015;2015:510319 [PMID: 26649306]
  48. Rice (N Y). 2016 Dec;9(1):21 [PMID: 27164982]
  49. Mol Plant. 2009 Jan;2(1):73-83 [PMID: 19529831]
  50. Plant Physiol. 2016 Sep;172(1):575-88 [PMID: 27382137]
  51. Plant J. 2009 Nov;60(4):575-88 [PMID: 19624469]
  52. Ann Bot. 2007 Nov;100(5):951-7 [PMID: 17617555]
  53. BMC Plant Biol. 2013 Jul 09;13:99 [PMID: 23837904]
  54. EMBO J. 2001 Apr 17;20(8):1875-87 [PMID: 11296221]
  55. J Exp Bot. 2014 Feb;65(2):453-64 [PMID: 24474809]
  56. Plant Cell Rep. 2005 Jan;23(8):540-7 [PMID: 15309499]
  57. J Exp Bot. 2010 Aug;61(13):3509-17 [PMID: 20603281]
  58. J Exp Bot. 2015 Nov;66(21):6803-17 [PMID: 26261267]
  59. Physiol Plant. 2013 Jan;147(1):15-27 [PMID: 22519646]
  60. Plant Physiol. 2012 Apr;158(4):1755-68 [PMID: 22301130]
  61. Dev Cell. 2015 Feb 9;32(3):278-89 [PMID: 25669882]
  62. Plant J. 1994 Aug;6(2):271-82 [PMID: 7920717]
  63. Plant Sci. 2016 Dec;253:58-67 [PMID: 27968997]
  64. Plant Cell. 2004 May;16(5):1163-77 [PMID: 15084714]
  65. J Biol Chem. 2000 Jan 21;275(3):1723-30 [PMID: 10636868]
  66. Plant Physiol. 2016 Oct;172(2):1182-1199 [PMID: 27493213]
  67. Plant J. 2005 Nov;44(4):541-56 [PMID: 16262705]
  68. Nat Cell Biol. 2008 Oct;10 (10 ):1217-23 [PMID: 18776898]
  69. Plant J. 2003 Jan;33(1):119-29 [PMID: 12943546]
  70. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92 [PMID: 16924117]
  71. Plant J. 2010 Feb;61(4):672-85 [PMID: 19947981]
  72. Nat Protoc. 2006;1(2):518-25 [PMID: 17406277]
  73. J Exp Bot. 2008;59(5):1109-14 [PMID: 18267941]
  74. J Exp Bot. 2004 Nov;55(407):2365-84 [PMID: 15475377]
  75. Ann Bot. 2002 Jun;89 Spec No:907-16 [PMID: 12102516]
  76. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11205-10 [PMID: 23776212]
  77. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  78. Curr Opin Plant Biol. 2014 Oct;21:133-9 [PMID: 25104049]
  79. Cell Stress Chaperones. 2013 Jul;18(4):427-37 [PMID: 23264228]
  80. Plant Cell Physiol. 2009 Jul;50(7):1345-63 [PMID: 19541597]
  81. J Exp Bot. 2008;59(4):839-48 [PMID: 18272919]
  82. Science. 2012 Jan 6;335(6064):85-8 [PMID: 22116026]