Local lung hypoxia determines epithelial fate decisions during alveolar regeneration.

Ying Xi, Thomas Kim, Alexis N Brumwell, Ian H Driver, Ying Wei, Victor Tan, Julia R Jackson, Jianming Xu, Dong-Kee Lee, Jeffrey E Gotts, Michael A Matthay, John M Shannon, Harold A Chapman, Andrew E Vaughan
Author Information
  1. Ying Xi: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  2. Thomas Kim: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  3. Alexis N Brumwell: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  4. Ian H Driver: Department of Anatomy, UCSF, San Francisco, California 94143, USA.
  5. Ying Wei: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  6. Victor Tan: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  7. Julia R Jackson: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  8. Jianming Xu: Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
  9. Dong-Kee Lee: Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
  10. Jeffrey E Gotts: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  11. Michael A Matthay: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.
  12. John M Shannon: Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
  13. Harold A Chapman: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA. ORCID
  14. Andrew E Vaughan: Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California 94143, USA.

Abstract

After influenza infection, lineage-negative epithelial progenitors (LNEPs) exhibit a binary response to reconstitute epithelial barriers: activating a Notch-dependent ΔNp63/cytokeratin 5 (Krt5) remodelling program or differentiating into alveolar type II cells (AEC2s). Here we show that local lung hypoxia, through hypoxia-inducible factor (HIF1α), drives Notch signalling and Krt5 basal-like cell expansion. Single-cell transcriptional profiling of human AEC2s from fibrotic lungs revealed a hypoxic subpopulation with activated Notch, suppressed surfactant protein C (SPC), and transdifferentiation toward a Krt5 basal-like state. Activated murine Krt5 LNEPs and diseased human AEC2s upregulate strikingly similar core pathways underlying migration and squamous metaplasia. While robust, HIF1α-driven metaplasia is ultimately inferior to AEC2 reconstitution in restoring normal lung function. HIF1α deletion or enhanced Wnt/β-catenin activity in Sox2 LNEPs blocks Notch and Krt5 activation, instead promoting rapid AEC2 differentiation and migration and improving the quality of alveolar repair.

References

  1. Nature. 1995 Sep 28;377(6547):355-8 [PMID: 7566092]
  2. J Biol Chem. 2003 Oct 10;278(41):40231-8 [PMID: 12885771]
  3. Cell. 2011 Oct 28;147(3):525-38 [PMID: 22036562]
  4. Am J Respir Cell Mol Biol. 2007 Aug;37(2):186-92 [PMID: 17431097]
  5. Nature. 2014 Apr 3;508(7494):103-107 [PMID: 24670641]
  6. Nature. 2015 Jul 30;523(7562):597-601 [PMID: 26147083]
  7. Cell. 2004 Aug 20;118(4):517-28 [PMID: 15315763]
  8. Exp Mol Pathol. 1975 Feb;22(1):142-50 [PMID: 163758]
  9. J Histochem Cytochem. 2010 Oct;58(10):891-901 [PMID: 20566753]
  10. Eur Respir J. 2016 Jan;47(1):288-303 [PMID: 26493804]
  11. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17 ):6392-7 [PMID: 18427106]
  12. Dev Cell. 2005 Nov;9(5):617-28 [PMID: 16256737]
  13. J Clin Invest. 2011 Jul;121(7):2855-62 [PMID: 21701069]
  14. Cell Immunol. 2001 Dec 15;214(2):110-22 [PMID: 12088410]
  15. J Clin Invest. 2014 May;124(5):2037-49 [PMID: 24713656]
  16. Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
  17. Nature. 2011 Oct 09;479(7372):189-93 [PMID: 21983963]
  18. PLoS Med. 2006 Mar;3(3):e47 [PMID: 16417408]
  19. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  20. Cell Stem Cell. 2014 Aug 7;15(2):123-38 [PMID: 25105578]
  21. BMC Pulm Med. 2015 Jul 16;15:72 [PMID: 26178733]
  22. Nature. 2015 Dec 3;528(7580):127-31 [PMID: 26580007]
  23. Nature. 2013 Nov 14;503(7475):218-23 [PMID: 24196716]
  24. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12771-5 [PMID: 19625615]
  25. Development. 2012 Dec 1;139(23 ):4365-73 [PMID: 23132245]
  26. Am J Respir Cell Mol Biol. 2014 Oct;51(4):516-25 [PMID: 24754775]
  27. Genes Dev. 1998 Jan 15;12(2):149-62 [PMID: 9436976]
  28. J Biol Chem. 2008 Oct 24;283(43):29532-44 [PMID: 18694942]
  29. Cancer Res. 2010 Feb 15;70(4):1544-54 [PMID: 20145120]
  30. Am J Physiol Lung Cell Mol Physiol. 2014 Aug 15;307(4):L283-94 [PMID: 24951777]
  31. Cancer Res. 2000 Aug 1;60(15):4010-5 [PMID: 10945599]
  32. Chest. 1975 Feb;67(2 Suppl):7S-14S [PMID: 1172777]
  33. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  34. J Lipid Res. 1976 May;17(3):281-4 [PMID: 932560]
  35. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  36. J Cell Sci. 2012 Feb 15;125(Pt 4):932-42 [PMID: 22421361]
  37. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):410-7 [PMID: 17194755]
  38. Stem Cells. 2008 May;26(5):1337-46 [PMID: 18356571]
  39. Oncogene. 2003 Apr 3;22(13):1988-97 [PMID: 12673204]
  40. J Clin Invest. 2013 Jul;123(7):3025-36 [PMID: 23921127]
  41. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12592-7 [PMID: 22797898]
  42. Cell Rep. 2016 Nov 22;17 (9):2312-2325 [PMID: 27880906]
  43. Development. 2009 May;136(10):1751-9 [PMID: 19369400]
  44. Nature. 2015 Jan 29;517(7536):621-5 [PMID: 25533958]
  45. EMBO J. 1999 Nov 1;18(21):5931-42 [PMID: 10545105]
  46. Nature. 2015 Jan 29;517(7536):616-20 [PMID: 25383540]
  47. Cell Stem Cell. 2011 Oct 4;9(4):317-29 [PMID: 21982232]
  48. Nature. 2014 Mar 13;507(7491):190-4 [PMID: 24499815]
  49. Stem Cell Reports. 2016 Nov 8;7(5):817-825 [PMID: 27773701]
  50. J Biol. 2004;3(3):11 [PMID: 15186480]
  51. Am J Respir Crit Care Med. 2007 Dec 1;176(11):1108-19 [PMID: 17761615]
  52. Int J Biol Sci. 2014 Sep 06;10(9):1007-17 [PMID: 25210499]
  53. Cell Stem Cell. 2009 Jun 5;4(6):525-34 [PMID: 19497281]

Grants

  1. R01 CA193455/NCI NIH HHS
  2. F32 HL117600/NHLBI NIH HHS
  3. R01 HL084376/NHLBI NIH HHS
  4. T32 HL007185/NHLBI NIH HHS
  5. R00 HL131817/NHLBI NIH HHS
  6. R37 HL051856/NHLBI NIH HHS
  7. U01 HL111054/NHLBI NIH HHS
  8. R01 HL128484/NHLBI NIH HHS
  9. T32 GM008339/NIGMS NIH HHS
  10. K99 HL131817/NHLBI NIH HHS
  11. U01 HL134766/NHLBI NIH HHS
  12. R01 CA112403/NCI NIH HHS

MeSH Term

Animals
Cell Lineage
Cell Movement
Cell Proliferation
Cell Transdifferentiation
Cells, Cultured
Disease Models, Animal
Epithelial Cells
Female
Gene Expression Profiling
Genotype
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit
Influenza A Virus, H1N1 Subtype
Influenza, Human
Keratin-5
Male
Mice, Transgenic
Orthomyxoviridae Infections
Oxygen
Phenotype
Phosphoproteins
Pulmonary Alveoli
Receptors, Notch
Regeneration
SOXB1 Transcription Factors
Single-Cell Analysis
Time Factors
Trans-Activators
Transcription Factors
Tumor Suppressor Proteins
Wnt Signaling Pathway

Chemicals

HIF1A protein, human
Hif1a protein, mouse
Hypoxia-Inducible Factor 1, alpha Subunit
KRT5 protein, human
Keratin-5
Phosphoproteins
Receptors, Notch
SOX2 protein, human
SOXB1 Transcription Factors
Sox2 protein, mouse
TP63 protein, human
Trans-Activators
Transcription Factors
Trp63 protein, mouse
Tumor Suppressor Proteins
Oxygen

Word Cloud

Similar Articles

Cited By