Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants.

Krista Versteeg, Andrea R Menicucci, Courtney Woolsey, Chad E Mire, Joan B Geisbert, Robert W Cross, Krystle N Agans, Daniel Jeske, Ilhem Messaoudi, Thomas W Geisbert
Author Information
  1. Krista Versteeg: Galveston National Laboratory, Galveston, TX, USA.
  2. Andrea R Menicucci: Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA.
  3. Courtney Woolsey: Galveston National Laboratory, Galveston, TX, USA.
  4. Chad E Mire: Galveston National Laboratory, Galveston, TX, USA. ORCID
  5. Joan B Geisbert: Galveston National Laboratory, Galveston, TX, USA.
  6. Robert W Cross: Galveston National Laboratory, Galveston, TX, USA.
  7. Krystle N Agans: Galveston National Laboratory, Galveston, TX, USA. ORCID
  8. Daniel Jeske: Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA.
  9. Ilhem Messaoudi: Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA. imessaou@uci.edu.
  10. Thomas W Geisbert: Galveston National Laboratory, Galveston, TX, USA. twgeisbe@utmb.edu.

Abstract

Zaire Ebolavirus (ZEBOV) continues to pose a significant threat to human health as highlighted by the recent epidemic that originated in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. Although the ZEBOV variant responsible for this epidemic (Makona) shares significant genetic similarity with previously identified variants (Kikwit and Mayinga), recent reports suggest slower disease progression in nonhuman primates. However, the pathogenesis caused by the new variant is not fully understood. We present the first comprehensive approach in understanding ZEBOV-Makona pathogenesis in cynomolgus macaques by measuring changes in immune cell frequencies, plasma levels of immune mediators, and differentially expressed genes (DEGs) within whole blood (WB) and peripheral blood mononuclear cells (PBMC). Our combined approach revealed a link between: 1) increased interferon-stimulated gene expression, IFNα levels, and activated plasmacytoid dendritic cells; 2) higher proinflammatory gene expression, cytokine and chemokine levels, and non-classical monocytes; 3) gene signature of leukocyte activation and increased granulocytes; and 4) decreased expression of lymphocyte related genes and lymphopenia. In addition, our data strongly indicate delayed disease progression as well as limited overlap (~30%) in host transcriptome changes following ZEBOV-Makona infection compared to ZEBOV-Kikwit. These observations provide novel insight into the molecular mechanisms of ZEBOV-Makona pathogenesis.

References

  1. J Immunol Methods. 2010 Aug 31;360(1-2):119-28 [PMID: 20600075]
  2. Nature. 2015 May 21;521(7552):362-5 [PMID: 25901685]
  3. Science. 2013 Apr 12;340(6129):202-7 [PMID: 23580528]
  4. Arch Pathol Lab Med. 1997 Aug;121(8):805-19 [PMID: 9278608]
  5. PLoS Negl Trop Dis. 2014 Jul 31;8(7):e3061 [PMID: 25079789]
  6. J Immunol. 2014 Jan 1;192(1):27-33 [PMID: 24363432]
  7. J Immunol. 2003 Mar 15;170(6):2797-801 [PMID: 12626527]
  8. Apoptosis. 2000 Feb;5(1):5-7 [PMID: 11227491]
  9. Genome Biol. 2017 Jan 19;18(1):4 [PMID: 28100256]
  10. J Infect Dis. 2007 Nov 15;196 Suppl 2:S323-8 [PMID: 17940967]
  11. Science. 2013 Apr 12;340(6129):207-11 [PMID: 23580529]
  12. Genome Biol. 2007;8(8):R174 [PMID: 17725815]
  13. Biomark Res. 2014 Jan 07;2(1):1 [PMID: 24398220]
  14. PLoS Pathog. 2014 Nov 20;10(11):e1004509 [PMID: 25412102]
  15. BMC Bioinformatics. 2016 Sep 20;17 :388 [PMID: 27650223]
  16. Nat Med. 1999 Apr;5(4):423-6 [PMID: 10202932]
  17. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  18. J Infect Dis. 1987 Mar;155(3):465-74 [PMID: 3543155]
  19. Emerg Infect Dis. 2015 Oct;21(10):1777-83 [PMID: 26402165]
  20. PLoS Negl Trop Dis. 2010 Oct 05;4(10):null [PMID: 20957152]
  21. J Infect Dis. 2015 Oct 1;212 Suppl 2:S91-7 [PMID: 26063223]
  22. J Infect Dis. 2016 Aug 15;214(4):565-9 [PMID: 27354371]
  23. PLoS One. 2014 Jan 29;9(1):e85448 [PMID: 24489661]
  24. J Virol. 2015 Aug;89(15):7567-83 [PMID: 25972536]
  25. Virus Res. 1993 Sep;29(3):215-40 [PMID: 8237108]
  26. J Virol. 2017 Jan 3;91(2): [PMID: 27847361]
  27. Viral Immunol. 2004;17(3):390-400 [PMID: 15357905]
  28. Sci Rep. 2017 Apr 20;7(1):919 [PMID: 28428619]
  29. J Infect Dis. 2016 Oct 15;214(suppl 3):S275-S280 [PMID: 27521367]
  30. Nat Immunol. 2008 Oct;9(10):1091-4 [PMID: 18800157]
  31. Cell. 2016 Nov 3;167(4):1088-1098.e6 [PMID: 27814506]
  32. J Infect Dis. 2003 Dec 1;188(11):1630-8 [PMID: 14639532]
  33. Nature. 2016 May 5;533(7601):100-4 [PMID: 27147028]
  34. N Engl J Med. 2014 Oct 9;371(15):1418-25 [PMID: 24738640]
  35. J Infect Dis. 2011 Nov;204 Suppl 3:S1043-52 [PMID: 21987740]
  36. BMC Genomics. 2016 Sep 05;17 :707 [PMID: 27595844]
  37. Am J Pathol. 2003 Dec;163(6):2347-70 [PMID: 14633608]
  38. Sci Rep. 2015 Sep 11;5:13886 [PMID: 26358827]
  39. Clin Vaccine Immunol. 2015 Mar;22(3):354-6 [PMID: 25589554]
  40. J Leukoc Biol. 2007 Sep;82(3):729-41 [PMID: 17537988]

Grants

  1. U19 AI109945/NIAID NIH HHS

MeSH Term

Animals
Biomarkers
Democratic Republic of the Congo
Ebolavirus
Gene Expression Profiling
Gene Regulatory Networks
Hemorrhagic Fever, Ebola
Host-Pathogen Interactions
Humans
Immunity, Innate
Immunomodulation
Leukocytes, Mononuclear
Lymphocyte Activation
Lymphopenia
Macaca fascicularis
Oxidative Stress
T-Lymphocyte Subsets
Transcriptome
Virus Replication

Chemicals

Biomarkers