Human hepatic organoids for the analysis of human genetic diseases.

Yuan Guan, Dan Xu, Phillip M Garfin, Ursula Ehmer, Melissa Hurwitz, Greg Enns, Sara Michie, Manhong Wu, Ming Zheng, Toshihiko Nishimura, Julien Sage, Gary Peltz
Author Information
  1. Yuan Guan: Department of Anesthesia.
  2. Dan Xu: Department of Anesthesia.
  3. Phillip M Garfin: Department of Pediatrics.
  4. Ursula Ehmer: Department of Pediatrics.
  5. Melissa Hurwitz: Department of Pediatrics.
  6. Greg Enns: Department of Pediatrics.
  7. Sara Michie: Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  8. Manhong Wu: Department of Anesthesia.
  9. Ming Zheng: Department of Anesthesia.
  10. Toshihiko Nishimura: Department of Anesthesia.
  11. Julien Sage: Department of Pediatrics.
  12. Gary Peltz: Department of Anesthesia.

Abstract

We developed an in vitro model system where induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional human hepatic organoids (HOs) through stages that resemble human liver during its embryonic development. The HOs consist of hepatocytes, and cholangiocytes, which are organized into epithelia that surround the lumina of bile duct-like structures. The organoids provide a potentially new model for liver regenerative processes, and were used to characterize the effect of different JAG1 mutations that cause: (a) Alagille syndrome (ALGS), a genetic disorder where NOTCH signaling pathway mutations impair bile duct formation, which has substantial variability in its associated clinical features; and (b) Tetralogy of Fallot (TOF), which is the most common form of a complex congenital heart disease, and is associated with several different heritable disorders. Our results demonstrate how an iPSC-based organoid system can be used with genome editing technologies to characterize the pathogenetic effect of human genetic disease-causing mutations.

Keywords

References

  1. Cell Stem Cell. 2016 May 5;18(5):573-86 [PMID: 27152442]
  2. Semin Liver Dis. 2002 Aug;22(3):213-26 [PMID: 12360416]
  3. Hum Mol Genet. 2001 Jan 15;10 (2):163-9 [PMID: 11152664]
  4. Hepatology. 1983 Jan-Feb;3(1):77-84 [PMID: 6822378]
  5. Nat Commun. 2015 Jan 22;6:6087 [PMID: 25608663]
  6. J Med Genet. 2003 Dec;40(12 ):891-5 [PMID: 14684686]
  7. Cell Stem Cell. 2012 Jun 14;10(6):771-85 [PMID: 22704518]
  8. J Embryol Exp Morphol. 1984 Feb;79:25-39 [PMID: 6371179]
  9. Nature. 2015 Jul 30;523(7562):597-601 [PMID: 26147083]
  10. J Clin Invest. 2012 Nov;122(11):3914-8 [PMID: 23023701]
  11. Cell. 2015 Jan 15;160(1-2):299-312 [PMID: 25533785]
  12. Semin Cell Dev Biol. 2012 Jun;23 (4):450-7 [PMID: 22306179]
  13. Trends Cell Biol. 1997 Nov;7(11):437-41 [PMID: 17709001]
  14. Toxicol Pathol. 2010 Oct;38(6):872-906 [PMID: 20805319]
  15. J Pharmacol Exp Ther. 2013 Feb;344(2):388-96 [PMID: 23143674]
  16. J Hepatol. 2012 May;56(5):1159-70 [PMID: 22245898]
  17. Development. 2002 Feb;129(4):1075-82 [PMID: 11861489]
  18. Development. 2004 Nov;131(22):5753-66 [PMID: 15509774]
  19. Nat Genet. 2007 Mar;39(3):397-402 [PMID: 17259985]
  20. J Cell Physiol. 2003 Mar;194(3):237-55 [PMID: 12548545]
  21. Hum Mol Genet. 1999 May;8(5):723-30 [PMID: 10196361]
  22. Hepatology. 2000 Sep;32(3):574-81 [PMID: 10960452]
  23. Perspect Pediatr Pathol. 1991;14:122-42 [PMID: 2038546]
  24. Hepatology. 1999 Mar;29(3):822-9 [PMID: 10051485]
  25. Nat Protoc. 2013 Feb;8(2):430-7 [PMID: 23424751]
  26. Curr Top Dev Biol. 2010;92:73-129 [PMID: 20816393]
  27. Development. 2010 Dec;137(23 ):4061-72 [PMID: 21062863]
  28. Nat Med. 2012 Mar 04;18(4):572-9 [PMID: 22388089]
  29. Science. 1995 Apr 14;268(5208):225-32 [PMID: 7716513]
  30. Development. 2008 May;135(9):1589-95 [PMID: 18356246]
  31. Gastroenterology. 2000 Oct;119(4):1113-22 [PMID: 11040198]
  32. Nat Genet. 2011 Jan;43(1):34-41 [PMID: 21113154]
  33. Cardiol Young. 2013 Dec;23(6):858-66 [PMID: 24401259]
  34. Hepatology. 2005 Mar;41(3):487-96 [PMID: 15723439]
  35. Nat Biotechnol. 2015 Aug;33(8):845-852 [PMID: 26167629]
  36. Nat Genet. 1997 Jul;16(3):243-51 [PMID: 9207788]
  37. Nat Biotechnol. 2015 Aug;33(8):853-61 [PMID: 26167630]
  38. Development. 2017 Mar 15;144(6):958-962 [PMID: 28292841]
  39. Hum Mutat. 2001;17 (1):18-33 [PMID: 11139239]
  40. J Clin Invest. 2010 Sep;120(9):3127-36 [PMID: 20739751]
  41. Am J Med Genet. 1999 May 7;84(1):56-60 [PMID: 10213047]
  42. Cancer Cell. 2013 Jun 10;23(6):784-95 [PMID: 23727022]
  43. Hepatology. 2010 Apr;51(4):1391-400 [PMID: 20069650]
  44. Nat Rev Genet. 2008 May;9(5):329-40 [PMID: 18398419]
  45. Gene. 2016 Jan 15;576(1 Pt 3):381-4 [PMID: 26548814]
  46. Hepatology. 1982 May-Jun;2(3):350-8 [PMID: 7076119]
  47. Nat Genet. 1997 Jul;16(3):235-42 [PMID: 9207787]
  48. Hepatology. 2016 Feb;63(2):550-65 [PMID: 26235536]
  49. Arch Toxicol. 2014 May;88(5):1161-83 [PMID: 24748404]
  50. Am J Hum Genet. 2003 Apr;72 (4):1065-70 [PMID: 12649809]
  51. Mamm Genome. 1994 Nov;5(11):663-9 [PMID: 7873876]
  52. Eur J Hum Genet. 1994;2(3):185-90 [PMID: 7834278]
  53. Gastroenterology. 2011 Oct;141(4):1432-8, 1438.e1-4 [PMID: 21708104]
  54. J Clin Invest. 2015 Jun;125(6):2445-57 [PMID: 25915586]
  55. J Med Genet. 1992 Apr;29(4):233-5 [PMID: 1583641]
  56. Nat Rev Genet. 2012 Sep;13(9):654-66 [PMID: 22868267]
  57. Gastroenterology. 2004 Dec;127(6):1775-86 [PMID: 15578515]
  58. Am J Pathol. 2007 Aug;171(2):641-53 [PMID: 17600123]
  59. Am J Surg Pathol. 2005 Jun;29(6):820-6 [PMID: 15897750]

Grants

  1. R01 CA114102/NCI NIH HHS
  2. UL1 TR001085/NCATS NIH HHS

MeSH Term

Alagille Syndrome
Cell Differentiation
Genetic Diseases, Inborn
Humans
Induced Pluripotent Stem Cells
Jagged-1 Protein
Liver
Organoids
Point Mutation
Receptors, Notch
Signal Transduction
Tetralogy of Fallot

Chemicals

JAG1 protein, human
Jagged-1 Protein
Receptors, Notch