Kirtikar Shukla, Himangshu Sonowal, Ashish Saxena, Kota V Ramana, Satish K Srivastava
Although we have shown earlier that aldose reductase (AR) inhibitors prevent colorectal cancer cell (CRC) growth in culture as well as in nude mice xenografts, the mechanism(s) is not well understood. In this study, we have investigated how AR inhibition prevents CRC growth by regulating the mitochondrial biogenesis via Nrf2/HO-1 pathway. Incubation of CRC cells such as SW-480, HT29, and HCT116 with AR inhibitor, fidarestat that non-covalently binds to the enzyme, increases the expression of Nrf2. Further, fidarestat augmented the EGF-induced expression of Nrf2 in CRC cells. Fidarestat also increased the Nrf2 -DNA binding activity as well as expression of HO-1 and NQO1 and activation of SOD and catalase in SW480 cells. Similarly, in nude mice xenograft tumor tissues, Nrf2 and HO-1 levels were significantly higher in fidarestat-treated mice compared to controls. Further, stimulation of CRC cells with EGF in the presence of fidarestat increased the mRNA levels of PGC-1α, Nrf1 and TFAM and protein levels of PGC-1α, TFAM and COX-IV and decreased the mitochondrial DNA damage as measured by 8-hydroxy-2'-deoxyguanosine levels. AR inhibitor also modulated the phosphorylations of AMPK and mTOR and expression of p53 in EGF-treated cells. Collectively, our results indicate that AR inhibitor prevents CRC growth by increasing mitochondrial biogenesis via increasing the expression of Nrf2/HO-1/AMPK/p53 and decreasing the mitochondrial DNA damage.
Carcinogenesis. 2012 Jan;33(1):101-7
[PMID:
22045030]
Biochem J. 2003 May 1;371(Pt 3):887-95
[PMID:
12570874]
Cancer Res. 2006 Oct 1;66(19):9705-13
[PMID:
17018629]
Adv Exp Med Biol. 2012;942:287-308
[PMID:
22399428]
Curr Cancer Drug Targets. 2011 May;11(4):451-64
[PMID:
21247378]
Cancer Res. 2004 Sep 15;64(18):6424-31
[PMID:
15374950]
Mol Cancer Ther. 2010 Apr;9(4):813-24
[PMID:
20354121]
Cancer Prev Res (Phila). 2008 Aug;1(3):187-91
[PMID:
19138955]
J Pharmacol Exp Ther. 2012 Apr;341(1):274-84
[PMID:
22267202]
Methods. 2001 Dec;25(4):402-8
[PMID:
11846609]
Biochim Biophys Acta. 2011 Jul;1812(7):719-31
[PMID:
21439372]
Oxid Med Cell Longev. 2016;2016:1958174
[PMID:
26697129]
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3410-5
[PMID:
11248092]
Cancer Prev Res (Phila). 2011 Mar;4(3):296-8
[PMID:
21372027]
Nat Rev Drug Discov. 2013 Dec;12(12):931-47
[PMID:
24287781]
Cold Spring Harb Protoc. 2014 Oct 01;2014(10):pdb.top074542
[PMID:
25275115]
Genes Dev. 2013 Oct 15;27(20):2179-91
[PMID:
24142871]
Cancer Res. 2003 Jul 1;63(13):3729-34
[PMID:
12839966]
Front Oncol. 2013 Dec 02;3:292
[PMID:
24350057]
Expert Opin Ther Targets. 2011 Mar;15(3):281-95
[PMID:
21261563]
Cancer Prev Res (Phila). 2015 May;8(5):444-54
[PMID:
25712056]
Onco Targets Ther. 2014 Aug 26;7:1497-518
[PMID:
25210464]
Carcinogenesis. 2011 Aug;32(8):1259-67
[PMID:
21642355]
Mol Med. 2001 Feb;7(2):135-45
[PMID:
11471548]
Curr Cancer Drug Targets. 2011 Jun;11(5):560-71
[PMID:
21486217]
Physiol Rev. 2008 Apr;88(2):611-38
[PMID:
18391175]
Am J Transl Res. 2014 Nov 22;6(6):649-63
[PMID:
25628777]
Free Radic Biol Med. 2015 Nov;88(Pt B):179-188
[PMID:
25975984]
Brain. 2011 Mar;134(Pt 3):678-92
[PMID:
21354971]
Updates Surg. 2016 Mar;68(1):7-11
[PMID:
27067591]
Nat Cell Biol. 2014 Oct;16(10):992-1003, 1-15
[PMID:
25241037]
Mol Cell Biol. 2016 Jun 29;36(14):1931-42
[PMID:
27161318]
Biochim Biophys Acta. 2011 Jul;1813(7):1269-78
[PMID:
20933024]
J Biol Chem. 2006 Jun 30;281(26):17652-60
[PMID:
16648138]
Antioxid Redox Signal. 2013 Apr 10;18(11):1249-62
[PMID:
22978663]
Physiol Genomics. 2009 Mar 3;37(1):58-66
[PMID:
19106183]