A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

Shanshan Zhao, Wei Hong, Jianguo Wu, Yu Wang, Shaoyi Ji, Shuyi Zhu, Chunhong Wei, Jinsong Zhang, Yi Li
Author Information
  1. Shanshan Zhao: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  2. Wei Hong: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  3. Jianguo Wu: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. ORCID
  4. Yu Wang: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  5. Shaoyi Ji: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  6. Shuyi Zhu: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  7. Chunhong Wei: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
  8. Jinsong Zhang: State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
  9. Yi Li: State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. ORCID

Abstract

Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, knockout mutants, as well as an mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

Keywords

References

  1. BMC Genomics. 2012 Oct 03;13:524 [PMID: 23033915]
  2. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4713-7 [PMID: 1374911]
  3. Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1963-71 [PMID: 23650359]
  4. PLoS Pathog. 2010 Jan 15;6(1):e1000729 [PMID: 20084269]
  5. Phytochem Anal. 2010 Nov-Dec;21(6):602-8 [PMID: 20690158]
  6. Plant Cell. 2013 Nov;25(11):4755-66 [PMID: 24285796]
  7. Plant Biotechnol J. 2013 Jan;11(1):33-42 [PMID: 23031077]
  8. Mol Plant Pathol. 2015 Jun;16(5):529-40 [PMID: 25220680]
  9. Plant Mol Biol. 2004 Sep;56(1):111-24 [PMID: 15604731]
  10. Annu Rev Phytopathol. 2016 Aug 4;54:99-120 [PMID: 27296147]
  11. Plant Physiol. 2013 Dec;163(4):1673-85 [PMID: 24144792]
  12. Trends Plant Sci. 2006 Apr;11(4):184-91 [PMID: 16531096]
  13. PLoS One. 2013;8(4):e60325 [PMID: 23577102]
  14. PLoS Pathog. 2011 Oct;7(10):e1002329 [PMID: 22028660]
  15. J Plant Physiol. 2011 Oct 15;168(15):1837-43 [PMID: 21757254]
  16. Plant J. 2016 Jan;85(1):30-45 [PMID: 26611351]
  17. PLoS Pathog. 2016 Sep 08;12 (9):e1005847 [PMID: 27606959]
  18. Front Plant Sci. 2014 Nov 21;5:660 [PMID: 25484888]
  19. Nat Plants. 2017 Jan 06;3:16203 [PMID: 28059073]
  20. Mol Plant Microbe Interact. 2007 Jun;20(6):659-70 [PMID: 17555274]
  21. Plant J. 1999 Feb;17(4):407-13 [PMID: 10205897]
  22. Mol Biol Rep. 2013 Feb;40(2):1255-63 [PMID: 23073776]
  23. Plant Physiol. 2005 Mar;137(3):1147-59 [PMID: 15728340]
  24. Nat Chem Biol. 2009 May;5(5):301-7 [PMID: 19377456]
  25. Plant Physiol. 2011 Sep;157(1):216-28 [PMID: 21753115]
  26. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  27. Plant J. 2010 Mar;61(5):804-15 [PMID: 20015061]
  28. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19547-52 [PMID: 18042708]
  29. Nat Rev Immunol. 2010 Sep;10(9):632-44 [PMID: 20706278]
  30. Elife. 2015 Feb 17;4:null [PMID: 25688565]
  31. Dev Cell. 2003 Feb;4(2):205-17 [PMID: 12586064]
  32. Plant Cell. 2013 May;25(5):1489-505 [PMID: 23709626]
  33. PLoS One. 2011 Mar 22;6(3):e18094 [PMID: 21445363]
  34. Plant Biotechnol J. 2014 Aug;12(6):694-708 [PMID: 24605920]
  35. Cell Mol Life Sci. 2009 Feb;66(4):636-48 [PMID: 18953685]
  36. Cell Res. 2013 Oct;23(10):1233-6 [PMID: 23999856]
  37. Plant Physiol. 1998 Jun;117(2):397-405 [PMID: 9625692]
  38. J Plant Physiol. 2009 Apr 1;166(6):626-43 [PMID: 18922600]
  39. Plant Cell. 1994 Oct;6(10):1401-14 [PMID: 7994174]
  40. J Virol. 2005 Oct;79(20):13018-27 [PMID: 16189004]
  41. Plant Physiol. 2006 Nov;142(3):1202-15 [PMID: 17012402]
  42. Mol Plant. 2015 Apr;8(4):495-505 [PMID: 25732590]
  43. Plant Physiol. 2005 Dec;139(4):1935-45 [PMID: 16299167]
  44. Plant J. 2009 Feb;57(4):615-25 [PMID: 18980655]
  45. Anal Biochem. 1979 Nov 15;100(1):140-5 [PMID: 543532]
  46. Annu Rev Phytopathol. 2015;53:45-66 [PMID: 25938276]
  47. Plant Physiol. 2015 Dec;169(4):2371-9 [PMID: 26482888]
  48. Plant Cell Environ. 2011 Feb;34(2):179-91 [PMID: 20807375]
  49. Nature. 2004 Sep 16;431(7006):356-63 [PMID: 15372043]
  50. Phytochemistry. 2006 Aug;67(15):1686-98 [PMID: 16766004]
  51. Plant Physiol. 2015 Sep;169(1):209-18 [PMID: 26091820]
  52. Front Plant Sci. 2013 May 24;4:155 [PMID: 23745126]
  53. Curr Opin Plant Biol. 2015 Oct;27:111-7 [PMID: 26190744]
  54. Nat Rev Microbiol. 2005 Oct;3(10):789-98 [PMID: 16132037]
  55. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  56. Curr Opin Virol. 2016 Apr;17:25-31 [PMID: 26656395]
  57. J Bacteriol. 2003 Jan;185(2):592-600 [PMID: 12511506]
  58. Plant Physiol. 2003 Aug;132(4):1973-81 [PMID: 12913153]
  59. Plant J. 2017 Jan;89(2):338-353 [PMID: 27701783]
  60. Annu Rev Phytopathol. 2006;44:393-416 [PMID: 16602950]
  61. Mol Plant. 2013 Nov;6(6):1830-48 [PMID: 23718947]
  62. Mol Plant Microbe Interact. 2013 Jul;26(7):721-33 [PMID: 23514111]
  63. Cell. 2015 Oct 22;163(3):670-83 [PMID: 26496607]
  64. Cell Host Microbe. 2013 Feb 13;13(2):143-54 [PMID: 23414755]
  65. J Gen Virol. 2006 Feb;87(Pt 2):429-38 [PMID: 16432031]
  66. Mol Plant. 2014 Jun;7(6):1057-60 [PMID: 24482434]
  67. Trends Plant Sci. 2015 Apr;20(4):219-29 [PMID: 25731753]

MeSH Term

Ethylenes
Gene Knockout Techniques
Host-Pathogen Interactions
Methionine Adenosyltransferase
Oryza
Plant Viruses
Viral Proteins
Virus Diseases

Chemicals

Ethylenes
Viral Proteins
ethylene
Methionine Adenosyltransferase