The genome draft of coconut (Cocos nucifera).

Yong Xiao, Pengwei Xu, Haikuo Fan, Luc Baudouin, Wei Xia, Stéphanie Bocs, Junyang Xu, Qiong Li, Anping Guo, Lixia Zhou, Jing Li, Yi Wu, Zilong Ma, Alix Armero, Auguste Emmanuel Issali, Na Liu, Ming Peng, Yaodong Yang
Author Information
  1. Yong Xiao: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  2. Pengwei Xu: BGI Genomics, BGI-Shenzhen, Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China.
  3. Haikuo Fan: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  4. Luc Baudouin: AGAP, Université de Montpellier, CIRAD, INRA, Montpellier Supagro, F-34398, Montpellier, France.
  5. Wei Xia: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  6. Stéphanie Bocs: AGAP, Université de Montpellier, CIRAD, INRA, Montpellier Supagro, F-34398, Montpellier, France.
  7. Junyang Xu: BGI Genomics, BGI-Shenzhen, Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China.
  8. Qiong Li: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Rd. Xueyuan No. 4, Haikou, Hainan 571101, P. R. China.
  9. Anping Guo: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Rd. Xueyuan No. 4, Haikou, Hainan 571101, P. R. China.
  10. Lixia Zhou: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  11. Jing Li: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  12. Yi Wu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.
  13. Zilong Ma: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Rd. Xueyuan No. 4, Haikou, Hainan 571101, P. R. China.
  14. Alix Armero: AGAP, Université de Montpellier, CIRAD, INRA, Montpellier Supagro, F-34398, Montpellier, France.
  15. Auguste Emmanuel Issali: Station Cocotier Marc Delorme, Centre National De Recherche Agronomique (CNRA) 07 B.P. 13, Port Bouet, Côte d'Ivoire.
  16. Na Liu: BGI Genomics, BGI-Shenzhen, Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China.
  17. Ming Peng: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Rd. Xueyuan No. 4, Haikou, Hainan 571101, P. R. China.
  18. Yaodong Yang: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Av. Wenqing No. 496, Wenchang, Hainan 571339, P. R. China.

Abstract

Coconut palm (Cocos nucifera,2n = 32), a member of genus Cocos and family Arecaceae (Palmaceae), is an important tropical fruit and oil crop. Currently, coconut palm is cultivated in 93 countries, including Central and South America, East and West Africa, Southeast Asia and the Pacific Islands, with a total growth area of more than 12 million hectares [1]. Coconut palm is generally classified into 2 main categories: "Tall" (flowering 8-10 years after planting) and "Dwarf" (flowering 4-6 years after planting), based on morphological characteristics and breeding habits. This Palmae species has a long growth period before reproductive years, which hinders conventional breeding progress. In spite of initial successes, improvements made by conventional breeding have been very slow. In the present study, we obtained de novo sequences of the Cocos nucifera genome: a major genomic resource that could be used to facilitate molecular breeding in Cocos nucifera and accelerate the breeding process in this important crop. A total of 419.67 gigabases (Gb) of raw reads were generated by the Illumina HiSeq 2000 platform using a series of paired-end and mate-pair libraries, covering the predicted Cocos nucifera genome length (2.42 Gb, variety "Hainan Tall") to an estimated ×173.32 read depth. A total scaffold length of 2.20 Gb was generated (N50 = 418 Kb), representing 90.91% of the genome. The coconut genome was predicted to harbor 28 039 protein-coding genes, which is less than in Phoenix dactylifera (PDK30: 28 889), Phoenix dactylifera (DPV01: 41 660), and Elaeis guineensis (EG5: 34 802). BUSCO evaluation demonstrated that the obtained scaffold sequences covered 90.8% of the coconut genome and that the genome annotation was 74.1% complete. Genome annotation results revealed that 72.75% of the coconut genome consisted of transposable elements, of which long-terminal repeat retrotransposons elements (LTRs) accounted for the largest proportion (92.23%). Comparative analysis of the antiporter gene family and ion channel gene families between C. nucifera and Arabidopsis thaliana indicated that significant gene expansion may have occurred in the coconut involving Na+/H+ antiporter, carnitine/acylcarnitine translocase, potassium-dependent sodium-calcium exchanger, and potassium channel genes. Despite its agronomic importance, C. nucifera is still under-studied. In this report, we present a draft genome of C. nucifera and provide genomic information that will facilitate future functional genomics and molecular-assisted breeding in this crop species.

Keywords

References

  1. Nucleic Acids Res. 2007 Jan;35(Database issue):D260-4 pubmed:17151080
  2. Nat Biotechnol. 2010 May;28(5):511-5 pubmed:20436464
  3. Nature. 2009 Jan 29;457(7229):551-6 pubmed:19189423
  4. Nat Commun. 2013;4:2274 pubmed:23917264
  5. Genome Res. 2004 May;14(5):988-95 pubmed:15123596
  6. Bioinformatics. 2015 Oct 1;31(19):3210-2 pubmed:26059717
  7. Molecules. 2009 Dec 09;14(12):5144-64 pubmed:20032881
  8. J Exp Bot. 2007;58(2):301-8 pubmed:17229760
  9. Nucleic Acids Res. 2000 Jan 1;28(1):231-4 pubmed:10592234
  10. Nucleic Acids Res. 2000 Jan 1;28(1):263-6 pubmed:10592242
  11. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 pubmed:9847135
  12. J Mol Biol. 1997 Apr 25;268(1):78-94 pubmed:9149143
  13. Nucleic Acids Res. 2009 Jan;37(Database issue):D380-6 pubmed:19036790
  14. Gigascience. 2017 Nov 1;6(11):1-11 pubmed:29048487
  15. Nature. 2000 Dec 14;408(6814):796-815 pubmed:11130711
  16. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 pubmed:16845043
  17. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10 pubmed:19274634
  18. Gigascience. 2012 Dec 27;1(1):18 pubmed:23587118
  19. Science. 2009 Nov 20;326(5956):1112-5 pubmed:19965430
  20. Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189 pubmed:27899595
  21. Nat Biotechnol. 2003 Jan;21(1):81-5 pubmed:12469134
  22. Bioinformatics. 2014 May 1;30(9):1236-40 pubmed:24451626
  23. Cytogenet Genome Res. 2005;110(1-4):462-7 pubmed:16093699
  24. Science. 2002 Apr 5;296(5565):92-100 pubmed:11935018
  25. Nucleic Acids Res. 2000 Jan 1;28(1):225-7 pubmed:10592232
  26. Mol Biol Evol. 2007 Aug;24(8):1586-91 pubmed:17483113
  27. PLoS One. 2013;8(3):e59997 pubmed:23555859
  28. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 pubmed:9862982
  29. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 pubmed:10592178
  30. Bioinformatics. 2009 May 1;25(9):1105-11 pubmed:19289445
  31. Genome Res. 2003 Sep;13(9):2178-89 pubmed:12952885
  32. Genome Res. 2002 Apr;12(4):656-64 pubmed:11932250
  33. Science. 2006 Sep 15;313(5793):1596-604 pubmed:16973872
  34. Database (Oxford). 2012 Feb 01;2012:bar068 pubmed:22301074
  35. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 pubmed:9254694
  36. Nucleic Acids Res. 1999 Jan 1;27(1):263-7 pubmed:9847197
  37. Nature. 2013 Aug 15;500(7462):335-9 pubmed:23883927
  38. Nat Biotechnol. 2011 May 29;29(6):521-7 pubmed:21623354
  39. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 pubmed:17485477
  40. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 pubmed:7433111
  41. Genome Biol. 2007;8(1):R13 pubmed:17241472
  42. Bioinformatics. 2004 Nov 1;20(16):2878-9 pubmed:15145805
  43. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 pubmed:15034147
  44. Syst Biol. 2010 May;59(3):307-21 pubmed:20525638

MeSH Term

Cocos
Genome, Plant
Molecular Sequence Annotation