DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.

Andrey Mikheikin, Anita Olsen, Kevin Leslie, Freddie Russell-Pavier, Andrew Yacoot, Loren Picco, Oliver Payton, Amir Toor, Alden Chesney, James K Gimzewski, Bud Mishra, Jason Reed
Author Information
  1. Andrey Mikheikin: Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA.
  2. Anita Olsen: Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA.
  3. Kevin Leslie: Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA.
  4. Freddie Russell-Pavier: National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, Middlesex, UK.
  5. Andrew Yacoot: National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, Middlesex, UK.
  6. Loren Picco: Interface Analysis Centre, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
  7. Oliver Payton: Interface Analysis Centre, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
  8. Amir Toor: Department of Internal Medicine, VCU School of Medicine, Richmond, 23284, VA, USA.
  9. Alden Chesney: VCU Massey Cancer Center, Richmond, 23284, VA, USA.
  10. James K Gimzewski: Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095, CA, USA. ORCID
  11. Bud Mishra: Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, USA.
  12. Jason Reed: Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA. jcreed@vcu.edu.

Abstract

Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

References

J R Soc Interface. 2012 Sep 7;9(74):2341-50 [PMID: 22456455]
Nature. 2010 Nov 4;468(7320):72-6 [PMID: 20935627]
Arch Pathol Lab Med. 2008 Aug;132(8):1355-61 [PMID: 18684042]
Rev Sci Instrum. 2014 Oct;85(10):103710 [PMID: 25362406]
J Mol Diagn. 2007 Sep;9(4):530-7 [PMID: 17652637]
BMC Cancer. 2014 Sep 01;14:645 [PMID: 25176351]
Nano Lett. 2012 Jul 11;12(7):3861-6 [PMID: 22698062]
Hum Mol Genet. 1995 May;4(5):831-6 [PMID: 7633442]
Biophys J. 1999 Jul;77(1):568-76 [PMID: 10388781]
Genes Chromosomes Cancer. 1998 Jan;21(1):17-29 [PMID: 9443038]
Nat Genet. 1999 Nov;23(3):309-13 [PMID: 10610179]
Sci Rep. 2016 Jan 19;6:19636 [PMID: 26781994]
J Comput Biol. 1997 Summer;4(2):91-118 [PMID: 9228610]
Sci Rep. 2014 Jul 18;4:5737 [PMID: 25034901]
Biophys J. 1996 Apr;70(4):1933-9 [PMID: 8785352]
ACS Nano. 2016 Nov 22;10 (11):9823-9830 [PMID: 27646634]
Nucleic Acids Res. 2016 Jan 29;44(2):e11 [PMID: 26481349]
Rev Sci Instrum. 2012 Jan;83(1):013703 [PMID: 22299958]
Nat Biotechnol. 2014 Aug;32(8):829-33 [PMID: 24964173]
Hum Mol Genet. 2001 Apr;10(7):705-13 [PMID: 11257103]
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7772-7 [PMID: 10869431]
Nat Methods. 2016 Jul;13(7):587-90 [PMID: 27159086]
Annu Rev Biophys Biomol Struct. 1996;25:395-429 [PMID: 8800476]
Hum Mutat. 2013 May;34(5):785-91 [PMID: 23420552]
Leukemia. 2003 Dec;17(12):2257-317 [PMID: 14671650]
Anal Chem. 2016 Mar 1;88(5):2527-32 [PMID: 26878668]
Nanotechnology. 2015 Feb 13;26(6):065501 [PMID: 25597347]
J Mol Biol. 1996 Dec 20;264(5):919-32 [PMID: 9000621]
Cancer Res. 1997 Mar 1;57(5):828-31 [PMID: 9041180]
Nat Nanotechnol. 2016 Feb;11(2):147-51 [PMID: 26595334]
Pac Symp Biocomput. 2005;:385-96 [PMID: 15759644]
IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1200-7 [PMID: 22759526]
Nat Rev Cancer. 2005 Apr;5(4):251-62 [PMID: 15803153]
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8046-51 [PMID: 9653137]
Nat Genet. 1997 Nov;17(3):341-5 [PMID: 9354803]
ACS Appl Mater Interfaces. 2010 Nov;2(11):3249-56 [PMID: 21033675]
Cancer Res. 2000 May 1;60(9):2335-41 [PMID: 10811103]
Genes Chromosomes Cancer. 2012 Mar;51(3):290-9 [PMID: 22120970]
Nat Methods. 2014 Sep;11(9):887 [PMID: 25317453]
Nucleic Acids Res. 2014 Apr;42(7):e50 [PMID: 24452797]
Rev Sci Instrum. 2013 Oct;84(10 ):103709 [PMID: 24182121]
Cancer. 2012 Nov 1;118(21):5210-6 [PMID: 22544547]

Grants

  1. R01 CA185189/NCI NIH HHS
  2. R01 GM094388/NIGMS NIH HHS
  3. P30 CA016059/NCI NIH HHS

MeSH Term

CRISPR-Cas Systems
Chromosome Mapping
DNA
Genomics
High-Throughput Nucleotide Sequencing
Humans
Image Processing, Computer-Assisted
Immunoglobulin Heavy Chains
Lymphoma, Follicular
Microscopy, Atomic Force
Nanoparticles
Nanotechnology
Proto-Oncogene Proteins c-bcl-2
Translocation, Genetic

Chemicals

Immunoglobulin Heavy Chains
Proto-Oncogene Proteins c-bcl-2
DNA