Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response.

Aaron M Horning, Yao Wang, Che-Kuang Lin, Anna D Louie, Rohit R Jadhav, Chia-Nung Hung, Chiou-Miin Wang, Chun-Lin Lin, Nameer B Kirma, Michael A Liss, Addanki P Kumar, LuZhe Sun, Zhijie Liu, Wei-Ting Chao, Qianben Wang, Victor X Jin, Chun-Liang Chen, Tim H-M Huang
Author Information
  1. Aaron M Horning: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  2. Yao Wang: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  3. Che-Kuang Lin: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  4. Anna D Louie: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  5. Rohit R Jadhav: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  6. Chia-Nung Hung: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  7. Chiou-Miin Wang: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  8. Chun-Lin Lin: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  9. Nameer B Kirma: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  10. Michael A Liss: Department of Urology, University of Texas Health Science Center, San Antonio at San Antonio, Texas.
  11. Addanki P Kumar: Department of Urology, University of Texas Health Science Center, San Antonio at San Antonio, Texas.
  12. LuZhe Sun: Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  13. Zhijie Liu: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  14. Wei-Ting Chao: Department of Life Science, Tunghai University, Taichung, Taiwan.
  15. Qianben Wang: Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio.
  16. Victor X Jin: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  17. Chun-Liang Chen: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas. chenc4@uthscsa.edu huangt3@uthscsa.edu.
  18. Tim H-M Huang: Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas. chenc4@uthscsa.edu huangt3@uthscsa.edu.

Abstract

Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G-M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle-related genes (, and ) and decreased dependence upon androgen receptor signaling. analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment. Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. .

References

  1. Urol Clin North Am. 1999 May;26(2):263-73 [PMID: 10361549]
  2. J Biol Chem. 1997 Nov 7;272(45):28501-11 [PMID: 9353311]
  3. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  4. Methods Mol Biol. 2011;761:151-61 [PMID: 21755447]
  5. Genomics. 1992 Jul;13(3):911-2 [PMID: 1386342]
  6. Mol Cell Biol. 1994 May;14 (5):3350-63 [PMID: 7513050]
  7. Lancet Oncol. 2011 Mar;12(3):245-55 [PMID: 21310658]
  8. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11890-5 [PMID: 12185249]
  9. Br J Cancer. 2012 Mar 13;106(6):1095-9 [PMID: 22361632]
  10. Nat Methods. 2014 Jul;11(7):740-2 [PMID: 24836921]
  11. EMBO J. 2011 May 20;30(13):2719-33 [PMID: 21602788]
  12. Mol Cancer Res. 2011 Aug;9(8):1067-77 [PMID: 21724752]
  13. Prostate. 2000 Jul 1;44(2):91-103 Jul 1;44(2) [PMID: 10881018]
  14. Nat Genet. 2015 Mar;47(3):209-16 [PMID: 25665006]
  15. Mol Cell Endocrinol. 1989 May;63(1-2):75-83 [PMID: 2787764]
  16. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  17. Nature. 2012 Jan 18;481(7381):306-13 [PMID: 22258609]
  18. Oncogene. 2017 Mar 23;36(12 ):1655-1668 [PMID: 27669432]
  19. Prostate. 2009 Dec 1;69(16):1724-9 [PMID: 19676093]
  20. Eur Urol. 2016 Jan;69(1):107-15 [PMID: 25481455]
  21. Genomics. 1994 Oct;23(3):691-3 [PMID: 7851898]
  22. Nat Rev Cancer. 2001 Oct;1(1):34-45 [PMID: 11900250]
  23. J Biol Chem. 2001 Feb 2;276(5):3604-9 [PMID: 11060306]
  24. EJIFCC. 2014 Apr 28;25(1):42-54 [PMID: 27683456]
  25. Cancer Control. 2004 Nov-Dec;11(6):364-73 [PMID: 15625524]
  26. Oncogene. 1999 Jan 7;18(1):269-75 [PMID: 9926943]
  27. Cell Motil Cytoskeleton. 1993;26(3):214-26 [PMID: 7904902]
  28. Cell Cycle. 2006 Apr;5(8):853-64 [PMID: 16627997]
  29. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  30. Oncotarget. 2016 Mar 22;7(12 ):14220-40 [PMID: 26871947]
  31. Nucl Recept Signal. 2008 Feb 01;6:e001 [PMID: 18301781]
  32. Clin Adv Hematol Oncol. 2013 Jan;11(1):14-23 [PMID: 23416859]
  33. Nat Rev Cancer. 2015 Dec;15(12):701-11 [PMID: 26563462]
  34. Curr Oncol. 2012 Dec;19(Suppl 3):S22-31 [PMID: 23355790]
  35. Prostate. 2013 Jun;73(8):813-26 [PMID: 23280481]
  36. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  37. J Cell Biol. 1973 Dec;59(3):766-71 [PMID: 4128323]
  38. Eur Urol. 2017 Apr;71(4):630-642 [PMID: 27591931]
  39. R J. 2016 Aug;8(1):289-317 [PMID: 27818791]
  40. Mol Cell Biol. 2015 Dec;35(24):4185-98 [PMID: 26438599]
  41. J Androl. 2007 Sep-Oct;28(5):670-8 [PMID: 17409465]
  42. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  43. Zh Mikrobiol Epidemiol Immunobiol. 1978 Jul;(7):31-7 [PMID: 358701]

Grants

  1. P30 CA054174/NCI NIH HHS
  2. R01 GM114142/NIGMS NIH HHS
  3. T32 CA148724/NCI NIH HHS
  4. U54 CA217297/NCI NIH HHS

MeSH Term

Androgens
Cell Line, Tumor
Gene Expression Profiling
Humans
Male
Prostatic Neoplasms
RNA

Chemicals

Androgens
RNA