Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling.

Justin Brumbaugh, Bruno Di Stefano, Xiuye Wang, Marti Borkent, Elmira Forouzmand, Katie J Clowers, Fei Ji, Benjamin A Schwarz, Marian Kalocsay, Stephen J Elledge, Yue Chen, Ruslan I Sadreyev, Steven P Gygi, Guang Hu, Yongsheng Shi, Konrad Hochedlinger
Author Information
  1. Justin Brumbaugh: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  2. Bruno Di Stefano: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  3. Xiuye Wang: Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
  4. Marti Borkent: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  5. Elmira Forouzmand: Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
  6. Katie J Clowers: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
  7. Fei Ji: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
  8. Benjamin A Schwarz: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  9. Marian Kalocsay: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
  10. Stephen J Elledge: Howard Hughes Medical Institute, Brigham and Women's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
  11. Yue Chen: Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, MN 55018, USA.
  12. Ruslan I Sadreyev: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA.
  13. Steven P Gygi: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
  14. Guang Hu: Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
  15. Yongsheng Shi: Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address: yongshes@uci.edu.
  16. Konrad Hochedlinger: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address: khochedlinger@mgh.harvard.edu.

Abstract

Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.

Keywords

References

Science. 2008 Jun 20;320(5883):1643-7 [PMID: 18566288]
Nat Methods. 2010 Jan;7(1):53-5 [PMID: 20010832]
Cell Stem Cell. 2017 Apr 6;20(4):571 [PMID: 28388433]
Nature. 2012 Aug 2;488(7409):116-20 [PMID: 22763441]
Cell Stem Cell. 2014 Sep 4;15(3):271-280 [PMID: 25192462]
Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
Mol Cell Biol. 2015 Mar;35(6):1014-25 [PMID: 25582194]
J Proteomics. 2016 Oct 4;148:85-93 [PMID: 27432472]
Nature. 2013 Oct 24;502(7472):462-71 [PMID: 24153299]
Cell Stem Cell. 2012 Mar 2;10(3):327-36 [PMID: 22385659]
Genome Res. 2013 Dec;23(12):2078-90 [PMID: 24072873]
Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
Nature. 2009 Aug 13;460(7257):863-8 [PMID: 19587682]
Stem Cell Reports. 2016 May 10;6(5):704-716 [PMID: 26947976]
Cell. 2011 Apr 15;145(2):183-97 [PMID: 21477851]
Cell Stem Cell. 2015 Nov 5;17(5):543-56 [PMID: 26412562]
Cell Stem Cell. 2009 Nov 6;5(5):554-66 [PMID: 19896445]
Nat Cell Biol. 2011 Oct 23;13(11):1353-60 [PMID: 22020437]
Annu Rev Genet. 2017 Nov 27;51:171-194 [PMID: 28853924]
EMBO J. 2014 Apr 16;33(8):878-89 [PMID: 24596251]
RNA. 2012 Dec;18(12):2105-17 [PMID: 23097429]
Cell Stem Cell. 2007 Oct 11;1(4):403-15 [PMID: 18159219]
RNA. 2011 Apr;17(4):761-72 [PMID: 21343387]
Mol Cell Biol. 2005 Aug;25(16):7193-202 [PMID: 16055728]
Cell. 2016 Sep 22;167(1):171-186.e15 [PMID: 27641501]
Nat Methods. 2014 Nov;11(11):1170-6 [PMID: 25262205]
Nat Struct Mol Biol. 2011 Feb;18(2):237-44 [PMID: 21258322]
Mol Cell. 2017 Feb 2;65(3):432-446.e5 [PMID: 28157505]
J Clin Invest. 2016 Mar 1;126(3):997-1011 [PMID: 26878175]
Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
Nat Neurosci. 2001 Jan;4(1):29-37 [PMID: 11135642]
Nat Methods. 2006 Apr;3(4):287-93 [PMID: 16554834]
Bioinformatics. 2012 Jul 15;28(14):1838-44 [PMID: 22569178]
Nat Biotechnol. 2006 Oct;24(10):1285-92 [PMID: 16964243]
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
Stem Cell Res. 2017 Mar;19:21-30 [PMID: 28038351]
Anal Chem. 2014 Jul 15;86(14):7150-8 [PMID: 24927332]
Nature. 2010 Feb 25;463(7284):1035-41 [PMID: 20107439]
Genome Res. 2016 Jan;26(1):24-35 [PMID: 26546131]
Cell. 2009 Aug 21;138(4):673-84 [PMID: 19703394]
Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
Nat Genet. 2011 Mar;43(3):264-8 [PMID: 21258342]
Mol Cell. 1998 Jan;1(2):243-53 [PMID: 9659921]
Methods Mol Biol. 2010;604:55-71 [PMID: 20013364]
Mol Syst Biol. 2014 Feb 25;10:719 [PMID: 24569168]
Cell Stem Cell. 2008 Mar 6;2(3):230-40 [PMID: 18371448]
Mol Cell. 2003 Dec;12(6):1467-76 [PMID: 14690600]
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 [PMID: 19372383]
Cell Stem Cell. 2017 Apr 6;20(4):462-477.e6 [PMID: 28111200]
Cell Rep. 2012 Jun 28;1(6):753-63 [PMID: 22813749]
Cell Stem Cell. 2015 Nov 5;17(5):557-68 [PMID: 26412560]
BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
PLoS Genet. 2015 Apr 23;11(4):e1005166 [PMID: 25906188]
Nat Chem Biol. 2015 Aug;11(8):571-578 [PMID: 26167872]
Nat Commun. 2014 Nov 21;5:5465 [PMID: 25413384]
Nature. 2014 Jun 19;510(7505):412-6 [PMID: 24814343]
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30 [PMID: 27677860]
J Biol Chem. 2012 Jul 20;287(30):25255-65 [PMID: 22661705]
Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
Cell. 2012 Dec 21;151(7):1617-32 [PMID: 23260147]
Cell Stem Cell. 2011 Oct 4;9(4):317-29 [PMID: 21982232]

Grants

  1. R01 GM090056/NIGMS NIH HHS
  2. P01 GM099134/NIGMS NIH HHS
  3. R01 AG011085/NIA NIH HHS
  4. R01 GM067945/NIGMS NIH HHS
  5. R01 HD058013/NICHD NIH HHS
  6. R01 CA177651/NCI NIH HHS
  7. F32 HD078029/NICHD NIH HHS

MeSH Term

Animals
Cells, Cultured
Cellular Reprogramming
Chromatin
Chromatin Assembly and Disassembly
Cleavage And Polyadenylation Specificity Factor
Embryonic Stem Cells
HEK293 Cells
Humans
Mice
Polyadenylation
Signal Transduction

Chemicals

Chromatin
Cleavage And Polyadenylation Specificity Factor
Nudt21 protein, mouse