Comprehensive characterisation of compartment-specific long non-coding RNAs associated with pancreatic ductal adenocarcinoma.

Luis Arnes, Zhaoqi Liu, Jiguang Wang, Carlo Maurer, Irina Sagalovskiy, Marta Sanchez-Martin, Nikhil Bommakanti, Diana C Garofalo, Dina A Balderes, Lori Sussel, Kenneth P Olive, Raul Rabadan
Author Information
  1. Luis Arnes: Department of Systems Biology, Columbia University Medical Center, New York City, New York, USA. ORCID
  2. Zhaoqi Liu: Department of Systems Biology, Columbia University Medical Center, New York City, New York, USA.
  3. Jiguang Wang: Department of Biomedical Informatics, Columbia University Medical Center, New York City, New York, USA.
  4. Carlo Maurer: Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York City, New York, USA.
  5. Irina Sagalovskiy: Department of Systems Biology, Columbia University Medical Center, New York City, New York, USA.
  6. Marta Sanchez-Martin: Institute for Cancer Genetics, Columbia University Medical Center, New York City, New York, USA.
  7. Nikhil Bommakanti: Department of Systems Biology, Columbia University Medical Center, New York City, New York, USA.
  8. Diana C Garofalo: Department of Genetics and Development, Columbia University Medical Center, New York City, New York, USA.
  9. Dina A Balderes: Department of Genetics and Development, Columbia University Medical Center, New York City, New York, USA.
  10. Lori Sussel: Department of Genetics and Development, Columbia University Medical Center, New York City, New York, USA.
  11. Kenneth P Olive: Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York City, New York, USA.
  12. Raul Rabadan: Department of Systems Biology, Columbia University Medical Center, New York City, New York, USA.

Abstract

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDA) is a highly metastatic disease with limited therapeutic options. Genome and transcriptome analyses have identified signalling pathways and cancer driver genes with implications in patient stratification and targeted therapy. However, these analyses were performed in bulk samples and focused on coding genes, which represent a small fraction of the genome.
DESIGN: We developed a computational framework to reconstruct the non-coding transcriptome from cross-sectional RNA-Seq, integrating somatic copy number alterations (SCNA), common germline variants associated to PDA risk and clinical outcome. We validated the results in an independent cohort of paired epithelial and stromal RNA-Seq derived from laser capture microdissected human pancreatic tumours, allowing us to annotate the compartment specificity of their expression. We employed systems and experimental biology approaches to interrogate the function of epithelial long non-coding RNAs (lncRNAs) associated with genetic traits and clinical outcome in PDA.
RESULTS: We generated a catalogue of PDA-associated lncRNAs. We showed that lncRNAs define molecular subtypes with biological and clinical significance. We identified lncRNAs in genomic regions with SCNA and single nucleotide polymorphisms associated with lifetime risk of PDA and associated with clinical outcome using genomic and clinical data in PDA. Systems biology and experimental functional analysis of two epithelial lncRNAs ( and ) suggest they regulate the transcriptional profile of pancreatic tumour samples and PDA cell lines.
CONCLUSIONS: Our findings indicate that lncRNAs are associated with genetic marks of pancreatic cancer risk, contribute to the transcriptional regulation of neoplastic cells and provide an important resource to design functional studies of lncRNAs in PDA.

Keywords

References

  1. Sci Rep. 2016 May 25;6:26557 [PMID: 27222304]
  2. Nat Genet. 2006 May;38(5):500-1 [PMID: 16642009]
  3. Cancer Res. 2014 Jun 1;74(11):2913-21 [PMID: 24840647]
  4. Nat Med. 2016 Aug;22(8):861-8 [PMID: 27376578]
  5. Nat Genet. 2013 Oct;45(10):1134-40 [PMID: 24071852]
  6. Nat Genet. 2015 Mar;47(3):199-208 [PMID: 25599403]
  7. Cancer Cell. 2012 Dec 11;22(6):737-50 [PMID: 23201164]
  8. Curr Biol. 2016 Dec 19;26(24):3257-3268 [PMID: 27818175]
  9. Cancer Res. 2010 Mar 1;70(5):2115-25 [PMID: 20160041]
  10. Nat Genet. 2017 Mar;49(3):367-376 [PMID: 28092686]
  11. Cancer Cell. 2014 Sep 8;26(3):344-357 [PMID: 25203321]
  12. Mol Cancer. 2011 Nov 13;10:141 [PMID: 22078386]
  13. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  14. Nature. 2007 Jun 14;447(7146):799-816 [PMID: 17571346]
  15. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  16. Nat Cell Biol. 2016 Apr;18(4):431-42 [PMID: 26999735]
  17. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  18. Nucleic Acids Res. 2013 May 1;41(10):e108 [PMID: 23558742]
  19. Int J Biol Sci. 2016 Jan 28;12(3):314-25 [PMID: 26929738]
  20. Cell Rep. 2015 Apr 7;11(1):137-48 [PMID: 25843708]
  21. Gut. 2014 Apr;63(4):656-64 [PMID: 23645620]
  22. Genome Biol. 2013;14(9):R104 [PMID: 24070194]
  23. Nat Genet. 2016 Jul;48(7):747-57 [PMID: 27213290]
  24. Nat Commun. 2015 Apr 09;6:6744 [PMID: 25855536]
  25. Nat Genet. 2017 Mar;49(3):358-366 [PMID: 28092682]
  26. Nature. 2016 Mar 3;531(7592):47-52 [PMID: 26909576]
  27. Nat Rev Cancer. 2010 Oct;10(10):683-95 [PMID: 20814421]
  28. Nat Genet. 2015 Aug;47(8):911-6 [PMID: 26098869]
  29. Elife. 2015 Jul 07;4: [PMID: 26151762]
  30. Cell. 2007 Jun 29;129(7):1311-23 [PMID: 17604720]
  31. Genes Dev. 2016 Dec 15;30(24):2669-2683 [PMID: 28087712]
  32. Mol Cell. 2013 Aug 8;51(3):349-59 [PMID: 23932716]
  33. Nat Genet. 2015 Oct;47(10):1168-78 [PMID: 26343385]
  34. Nature. 2016 Nov 17;539(7629):433-436 [PMID: 27783597]
  35. Nature. 2010 Feb 18;463(7283):899-905 [PMID: 20164920]
  36. Nat Genet. 2005 Apr;37(4):382-90 [PMID: 15778709]
  37. Oncotarget. 2015 Nov 3;6(34):35684-98 [PMID: 26447755]
  38. Nature. 2014 Aug 7;512(7512):82-6 [PMID: 25043044]
  39. Bioinformatics. 2016 Jul 15;32(14):2233-5 [PMID: 27153652]
  40. Nat Med. 2011 Apr;17(4):500-3 [PMID: 21460848]
  41. Nat Med. 2015 Nov;21(11):1253-61 [PMID: 26540387]
  42. Science. 2008 Oct 31;322(5902):750-6 [PMID: 18974356]
  43. Science. 2012 Sep 7;337(6099):1190-5 [PMID: 22955828]
  44. Gut. 2017 Sep;66(9):1665-1676 [PMID: 27325420]
  45. Nature. 2016 Mar 24;531(7595):518-22 [PMID: 27008969]
  46. Nature. 2017 Mar 9;543(7644):199-204 [PMID: 28241135]
  47. CA Cancer J Clin. 2017 Jan;67(1):7-30 [PMID: 28055103]
  48. Nucleic Acids Res. 2013 Apr 1;41(6):e74 [PMID: 23335781]
  49. Science. 2008 Sep 26;321(5897):1801-6 [PMID: 18772397]
  50. Oncogene. 2003 Sep 11;22(39):8031-41 [PMID: 12970751]
  51. Cell Death Dis. 2014 Jan 23;5:e1008 [PMID: 24457952]
  52. Science. 2011 Feb 18;331(6019):912-6 [PMID: 21330545]
  53. Sci Rep. 2016 Sep 08;6:32818 [PMID: 27605457]
  54. Sci Rep. 2016 Sep 15;6:33535 [PMID: 27628540]
  55. Cancer Cell. 2016 Apr 11;29(4):452-463 [PMID: 27070700]

Grants

  1. U54 CA209997/NCI NIH HHS
  2. R21 CA188059/NCI NIH HHS
  3. U54 CA193313/NCI NIH HHS
  4. P30 CA013696/NCI NIH HHS
  5. U01 CA217858/NCI NIH HHS
  6. P30 DK063608/NIDDK NIH HHS

MeSH Term

Carcinoma, Pancreatic Ductal
Computational Biology
DNA Copy Number Variations
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genetic Markers
Germ-Line Mutation
High-Throughput Nucleotide Sequencing
Humans
Kaplan-Meier Estimate
Pancreatic Neoplasms
Polymorphism, Single Nucleotide
Prognosis
RNA, Long Noncoding
RNA, Neoplasm
Transcriptome

Chemicals

Genetic Markers
RNA, Long Noncoding
RNA, Neoplasm