A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice.

Joakim S Dahlin, Fiona K Hamey, Blanca Pijuan-Sala, Mairi Shepherd, Winnie W Y Lau, Sonia Nestorowa, Caleb Weinreb, Samuel Wolock, Rebecca Hannah, Evangelia Diamanti, David G Kent, Berthold Göttgens, Nicola K Wilson
Author Information
  1. Joakim S Dahlin: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom. ORCID
  2. Fiona K Hamey: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom. ORCID
  3. Blanca Pijuan-Sala: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  4. Mairi Shepherd: Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and.
  5. Winnie W Y Lau: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  6. Sonia Nestorowa: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  7. Caleb Weinreb: Department of Systems Biology, Harvard Medical School, Boston, MA.
  8. Samuel Wolock: Department of Systems Biology, Harvard Medical School, Boston, MA.
  9. Rebecca Hannah: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  10. Evangelia Diamanti: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  11. David G Kent: Department of Haematology, University of Cambridge, Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; and.
  12. Berthold Göttgens: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.
  13. Nicola K Wilson: Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research and Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom.

Abstract

Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W/W) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.

References

  1. Stem Cell Reports. 2016 Sep 13;7(3):571-582 [PMID: 27499199]
  2. Science. 2016 Jan 8;351(6269):aab2116 [PMID: 26541609]
  3. Blood. 2013 Aug 15;122(7):1150-61 [PMID: 23836559]
  4. Exp Hematol. 1983 Jul;11(6):452-60 [PMID: 6352297]
  5. J Exp Med. 2000 Jan 3;191(1):181-8 [PMID: 10620616]
  6. Nature. 2016 Feb 11;530(7589):223-7 [PMID: 26863982]
  7. Nat Biotechnol. 2016 Jun;34(6):637-45 [PMID: 27136076]
  8. Annu Rev Immunol. 2014;32:283-321 [PMID: 24471430]
  9. J Leukoc Biol. 2009 Dec;86(6):1417-25 [PMID: 19703899]
  10. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  11. Exp Hematol. 1996 Feb;24(2):185-94 [PMID: 8641340]
  12. Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18105-10 [PMID: 16330751]
  13. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1609-14 [PMID: 9990072]
  14. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1806-10 [PMID: 9050860]
  15. Exp Hematol. 2007 Feb;35(2):214-220 [PMID: 17258070]
  16. J Exp Med. 2014 Jun 30;211(7):1315-31 [PMID: 24958848]
  17. Exp Hematol. 2014 Feb;42(2):74-82.e2 [PMID: 24269919]
  18. Nat Immunol. 2016 Jul;17 (7):878-87 [PMID: 27135604]
  19. Nucleic Acids Res. 2013 Sep;41(16):7683-99 [PMID: 23804767]
  20. Cell. 2005 Apr 22;121(2):295-306 [PMID: 15851035]
  21. Nat Cell Biol. 2017 Apr;19(4):271-281 [PMID: 28319093]
  22. Genetics. 1981 Feb;97(2):337-61 [PMID: 7274658]
  23. Nature. 2016 Sep 29;537(7622):698-702 [PMID: 27580035]
  24. Nat Immunol. 2016 Jun;17 (6):666-676 [PMID: 27043410]
  25. Blood. 2000 Jan 15;95(2):726-7 [PMID: 10660321]
  26. Nat Methods. 2016 Oct;13(10 ):845-8 [PMID: 27571553]
  27. Bioinformatics. 2015 Sep 15;31(18):2989-98 [PMID: 26002886]
  28. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7426-31 [PMID: 15899970]
  29. Cell Stem Cell. 2015 Jun 4;16(6):712-24 [PMID: 26004780]
  30. Nat Methods. 2017 Oct;14 (10 ):979-982 [PMID: 28825705]
  31. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  32. Nature. 2018 Mar 1;555(7694):54-60 [PMID: 29466336]
  33. PLoS Biol. 2013;11(6):e1001576 [PMID: 23750118]
  34. Nat Cell Biol. 2013 Apr;15(4):363-72 [PMID: 23524953]
  35. EMBO J. 1990 Jun;9(6):1805-13 [PMID: 1693331]
  36. Nature. 2014 Oct 16;514(7522):322-7 [PMID: 25296256]
  37. Science. 2015 Jul 10;349(6244):1259425 [PMID: 26160952]
  38. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23 ):5822-5829 [PMID: 28584094]
  39. EMBO Rep. 2016 Oct;17 (10 ):1374-1395 [PMID: 27629041]
  40. Blood. 2006 Mar 15;107(6):2317-21 [PMID: 16304059]
  41. Nature. 1995 Sep 21;377(6546):242-6 [PMID: 7545788]
  42. Blood. 2009 Jun 18;113(25):6342-50 [PMID: 19377048]
  43. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  44. Cell Stem Cell. 2014 Oct 2;15(4):507-522 [PMID: 25158935]
  45. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10560-4 [PMID: 7479840]
  46. Blood. 1997 Feb 15;89(4):1214-23 [PMID: 9028944]
  47. Cell Death Differ. 2007 Oct;14(10):1768-79 [PMID: 17599099]
  48. Blood. 2011 Oct 6;118(14):e101-11 [PMID: 21596849]
  49. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  50. Bioinformatics. 2018 Apr 1;34(7):1246-1248 [PMID: 29228172]
  51. Blood. 2001 Jun 1;97(11):3559-67 [PMID: 11369651]
  52. Nat Cell Biol. 2012 Feb 19;14(3):287-94 [PMID: 22344032]
  53. J Exp Med. 1994 Jul 1;180(1):67-73 [PMID: 8006601]
  54. Cell. 2015 Dec 17;163(7):1663-77 [PMID: 26627738]
  55. Cold Spring Harb Perspect Med. 2013 Apr 01;3(4):a011601 [PMID: 23545573]

Grants

  1. MC_PC_12009/Medical Research Council
  2. 1509287/Medical Research Council
  3. 206328/Z/17/Z/Wellcome Trust
  4. MR/M008975/1/Medical Research Council
  5. MR/S036113/1/Medical Research Council
  6. /Wellcome Trust
  7. 21762/Cancer Research UK
  8. R24 DK106766/NIDDK NIH HHS

MeSH Term

Animals
Bone Marrow Cells
Cell Differentiation
Cell Line, Tumor
Cell Lineage
Cells, Cultured
Gene Expression Profiling
Hematopoietic Stem Cells
Mice
Mice, Knockout
Mutation
Proto-Oncogene Proteins c-kit
Signal Transduction
Single-Cell Analysis
Transcriptome

Chemicals

Proto-Oncogene Proteins c-kit