Pseudotime Dynamics in Melanoma Single-Cell Transcriptomes Reveals Different Mechanisms of Tumor Progression.

Henry Loeffler-Wirth, Hans Binder, Edith Willscher, Tobias Gerber, Manfred Kunz
Author Information
  1. Henry Loeffler-Wirth: Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany. wirth@izbi.uni-leipzig.de.
  2. Hans Binder: Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany. binder@izbi.uni-leipzig.de.
  3. Edith Willscher: Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany. willscher@izbi.uni-leipzig.de.
  4. Tobias Gerber: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology Leipzig, 04103 Leipzig, Germany. tobias_gerber@eva.mpg.de.
  5. Manfred Kunz: Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany. manfred.kunz@medizin.uni-leipzig.de.

Abstract

Single-cell transcriptomics has been used for analysis of heterogeneous populations of cells during developmental processes and for analysis of tumor cell heterogeneity. More recently, analysis of pseudotime (PT) dynamics of heterogeneous cell populations has been established as a powerful concept to study developmental processes. Here we perform PT analysis of 3 melanoma short-term cultures with different genetic backgrounds to study specific and concordant properties of PT dynamics of selected cellular programs with impact on melanoma progression. Overall, in our setting of melanoma cells PT dynamics towards higher tumor malignancy appears to be largely driven by cell cycle genes. Single cells of all three short-term cultures show a bipolar expression of microphthalmia-associated transcription factor (MITF) and AXL receptor tyrosine kinase (AXL) signatures. Furthermore, opposing gene expression changes are observed for genes regulated by epigenetic mechanisms suggesting epigenetic reprogramming during melanoma progression. The three melanoma short-term cultures show common themes of PT dynamics such as a stromal signature at initiation, bipolar expression of the MITF/AXL signature and opposing regulation of poised and activated promoters. Differences are observed at the late stage of PT dynamics with high, low or intermediate MITF and anticorrelated AXL signatures. These findings may help to identify targets for interference at different stages of tumor progression.

Keywords

References

  1. Clin Cancer Res. 2014 May 1;20(9):2257-63 [PMID: 24610826]
  2. Oncogene. 2017 Jan 12;36(2):147-157 [PMID: 27270434]
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  4. Nature. 2015 Feb 19;518(7539):317-30 [PMID: 25693563]
  5. Cell. 2014 Apr 24;157(3):714-25 [PMID: 24766814]
  6. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  7. Oncogene. 2017 Apr;36(15):2131-2145 [PMID: 27721408]
  8. J Cell Sci Ther. 2015 Jun;6(3):null [PMID: 26457230]
  9. Pathology. 2013 Aug;45(5):443-52 [PMID: 23851614]
  10. Science. 2013 Nov 8;342(6159):750-2 [PMID: 24136358]
  11. Cancer Treat Res. 2016;167:231-50 [PMID: 26601865]
  12. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  13. Cancer Discov. 2014 Jul;4(7):816-27 [PMID: 24771846]
  14. Cancer Res. 2016 Aug 15;76(16):4765-74 [PMID: 27216186]
  15. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  16. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  17. Oncotarget. 2017 Feb 7;8(6):10498-10509 [PMID: 28060736]
  18. Cell. 2015 Jun 18;161(7):1681-96 [PMID: 26091043]
  19. J Invest Dermatol. 2016 Dec;136(12):2502-2505 [PMID: 27345472]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Methods. 2015 Sep 1;85:54-61 [PMID: 26142758]
  22. Nat Rev Genet. 2016 Nov;17(11):693-703 [PMID: 27616569]
  23. Nat Genet. 2008 May;40(5):499-507 [PMID: 18443585]
  24. N Engl J Med. 2008 Nov 27;359(22):2313-23 [PMID: 19038878]
  25. Clin Cancer Res. 2012 Aug 1;18(15):4026-36 [PMID: 22675174]
  26. PLoS One. 2007 Feb 21;2(2):e236 [PMID: 17311103]
  27. Nat Commun. 2014 Dec 15;5:5712 [PMID: 25502142]
  28. BioData Min. 2012 Oct 08;5(1):18 [PMID: 23043905]
  29. Cell. 2017 Feb 9;168(4):613-628 [PMID: 28187284]
  30. Oncotarget. 2017 Jan 3;8(1):846-862 [PMID: 27903987]
  31. BMC Bioinformatics. 2009 Sep 23;10:307 [PMID: 19775443]
  32. Cancer Treat Res. 2016;167:251-62 [PMID: 26601866]
  33. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672-7 [PMID: 26644564]
  34. Science. 2013 Mar 29;339(6127):1567-70 [PMID: 23539597]
  35. Nat Rev Genet. 2016 Mar;17(3):175-88 [PMID: 26806412]
  36. J Natl Cancer Inst. 2006 Apr 5;98(7):472-82 [PMID: 16595783]
  37. Ther Adv Med Oncol. 2016 Jan;8(1):48-56 [PMID: 26753005]
  38. Cancer Discov. 2014 Apr;4(4):390-1 [PMID: 24706656]
  39. Genes Dev. 2017 Jan 1;31(1):18-33 [PMID: 28096186]
  40. Curr Opin Genet Dev. 2017 Feb;42:22-32 [PMID: 28126650]
  41. Mol Biol Cell. 2002 Jun;13(6):1977-2000 [PMID: 12058064]
  42. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  43. Eur J Cancer. 2016 Jul;62:76-85 [PMID: 27232329]
  44. Clin Cancer Res. 2010 Jul 1;16(13):3356-67 [PMID: 20460471]
  45. PLoS Comput Biol. 2016 Nov 21;12(11):e1005212 [PMID: 27870852]

Word Cloud

Similar Articles

Cited By