Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.

Xiaoping Han, Haide Chen, Daosheng Huang, Huidong Chen, Lijiang Fei, Chen Cheng, He Huang, Guo-Cheng Yuan, Guoji Guo
Author Information
  1. Xiaoping Han: Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
  2. Haide Chen: Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China. hyde@zju.edu.cn.
  3. Daosheng Huang: Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
  4. Huidong Chen: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Chan School of Public Health, Boston, MA, 02115, USA.
  5. Lijiang Fei: Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
  6. Chen Cheng: College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
  7. He Huang: Institute of Hematology, The 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
  8. Guo-Cheng Yuan: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Chan School of Public Health, Boston, MA, 02115, USA. gcyuan@jimmy.harvard.edu.
  9. Guoji Guo: Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China. ggj@zju.edu.cn.

Abstract

BACKGROUND: Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved.
RESULTS: We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells.
CONCLUSIONS: Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

Keywords

References

  1. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  2. J Leukoc Biol. 2009 Aug;86(2):237-50 [PMID: 19498045]
  3. J Biol Chem. 2010 Dec 10;285(50):38969-77 [PMID: 20937833]
  4. Development. 2015 Mar 1;142(5):994-1005 [PMID: 25715399]
  5. Nat Biotechnol. 2009 Mar;27(3):275-80 [PMID: 19252484]
  6. Nat Methods. 2017 Nov;14(11):1055-1062 [PMID: 28945704]
  7. Cell Rep. 2016 Feb 2;14(4):956-965 [PMID: 26804902]
  8. Stem Cells. 2006 Aug;24(8):1946-55 [PMID: 16627687]
  9. Nature. 2013 Dec 12;504(7479):282-6 [PMID: 24172903]
  10. J Bone Miner Res. 2006 Jun;21(6):902-9 [PMID: 16753021]
  11. Nat Commun. 2015 Jul 22;6:7866 [PMID: 26198319]
  12. Sci Rep. 2016 Aug 17;6:31623 [PMID: 27530599]
  13. Nat Rev Mol Cell Biol. 2017 Jan;18(1):56-67 [PMID: 27876786]
  14. J Biol Chem. 2012 Oct 26;287(44):37171-84 [PMID: 22923615]
  15. Cell Rep. 2012 Sep 27;2(3):666-73 [PMID: 22939981]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. Stem Cells. 2014 Aug;32(8):2072-83 [PMID: 24677751]
  18. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  19. Am J Hum Genet. 2014 Apr 3;94(4):634-41 [PMID: 24702957]
  20. Cold Spring Harb Perspect Biol. 2012 Aug 01;4(8):a008128 [PMID: 22855723]
  21. Development. 2003 Sep;130(17):4217-27 [PMID: 12874139]
  22. Gene Expr Patterns. 2005 Feb;5(3):349-54 [PMID: 15661640]
  23. Mol Med. 2000 Feb;6(2):88-95 [PMID: 10859025]
  24. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 [PMID: 24623855]
  25. Nature. 2009 Jul 2;460(7251):118-22 [PMID: 19571885]
  26. Nat Immunol. 2016 Apr;17(4):451-60 [PMID: 26878113]
  27. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  28. Int J Clin Exp Med. 2015 May 15;8(5):7890-7 [PMID: 26221345]
  29. Nat Rev Genet. 2014 Feb;15(2):82-92 [PMID: 24434846]
  30. Biochim Biophys Acta Gene Regul Mech. 2017 Oct;1860(10):1025-1036 [PMID: 28847732]
  31. Cell Stem Cell. 2009 Jun 5;4(6):487-92 [PMID: 19497275]
  32. Science. 1998 Nov 6;282(5391):1145-7 [PMID: 9804556]
  33. Stem Cells. 2005 Aug;23(7):903-13 [PMID: 16043458]
  34. Circ Res. 2010 Jul 9;107(1):96-105 [PMID: 20360252]
  35. Development. 2001 Jun;128(11):1995-2005 [PMID: 11493522]
  36. BMC Dev Biol. 2011 Jun 14;11:40 [PMID: 21672228]
  37. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  38. Blood. 2005 Aug 1;106(3):860-70 [PMID: 15831705]
  39. Nature. 2017 Jun 22;546(7659):533-538 [PMID: 28614297]
  40. J Biol Chem. 2013 Apr 12;288(15):10265-74 [PMID: 23393131]
  41. Mol Cell. 2015 May 21;58(4):610-20 [PMID: 26000846]
  42. Nat Commun. 2015 Dec 14;6:10232 [PMID: 26659141]
  43. J Neurobiol. 1996 Nov;31(3):283-96 [PMID: 8910787]
  44. Reprod Biol Endocrinol. 2010 Oct 27;8:127 [PMID: 20977773]
  45. Cell Stem Cell. 2013 Oct 3;13(4):459-70 [PMID: 24094326]
  46. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  47. J Biol Chem. 2012 Sep 7;287(37):31342-8 [PMID: 22822070]
  48. Thromb Haemost. 2012 Jan;107(1):158-66 [PMID: 22116349]
  49. Cell. 2016 May 5;165(4):1012-26 [PMID: 27062923]
  50. Cell Stem Cell. 2008 Dec 4;3(6):625-36 [PMID: 19041779]
  51. Cell Stem Cell. 2016 Oct 6;19(4):502-515 [PMID: 27424783]
  52. Cell Res. 2017 Jun;27(6):842 [PMID: 28572570]
  53. Nat Biotechnol. 2008 Apr;26(4):443-52 [PMID: 18288110]
  54. Int J Dev Biol. 2007;51(2):97-105 [PMID: 17294360]
  55. Blood. 2007 Oct 1;110(7):2351-60 [PMID: 17622570]
  56. Cell. 2015 Dec 3;163(6):1400-12 [PMID: 26607794]
  57. Blood. 2005 Jan 15;105(2):617-26 [PMID: 15374881]
  58. Curr Protoc Stem Cell Biol. 2007 Sep;Chapter 1:Unit 1C.2 [PMID: 18785163]
  59. Nat Commun. 2017 Oct 23;8(1):1096 [PMID: 29061959]
  60. Nature. 2011 Nov 06;480(7378):547-51 [PMID: 22056989]
  61. Genome Med. 2017 Aug 18;9(1):75 [PMID: 28821273]
  62. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  63. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  64. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  65. Hum Mol Genet. 2016 Sep 1;25(17):3741-3753 [PMID: 27402882]
  66. Nat Commun. 2017 May 05;8:15081 [PMID: 28474673]
  67. Genes Dev. 2011 Feb 1;25(3):238-50 [PMID: 21245162]
  68. Cell. 2013 May 23;153(5):963-75 [PMID: 23706735]
  69. Nat Commun. 2017 Apr 21;8:15055 [PMID: 28429706]
  70. Int J Biol Sci. 2016 Feb 20;12(5):505-17 [PMID: 27019633]
  71. J Cell Biol. 2007 Aug 13;178(4):635-48 [PMID: 17698607]
  72. Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16752-7 [PMID: 19805368]
  73. Dev Biol. 2007 Mar 15;303(2):838-47 [PMID: 17196956]
  74. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  75. Nature. 2014 May 15;509(7500):371-5 [PMID: 24739965]
  76. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2996-3004 [PMID: 25002511]
  77. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  78. Cell Stem Cell. 2014 Oct 2;15(4):471-487 [PMID: 25090446]
  79. Nat Protoc. 2016 Feb;11(2):327-46 [PMID: 26797457]
  80. Development. 2015 Jan 15;142(2):242-57 [PMID: 25564621]
  81. Blood. 1999 May 1;93(9):2760-70 [PMID: 10216069]
  82. Cell. 2017 Apr 6;169(2):243-257.e25 [PMID: 28388409]
  83. Stem Cells Dev. 2008 Oct;17(5):917-27 [PMID: 18564035]
  84. Development. 2016 Dec 1;143(23):4368-4380 [PMID: 27660325]
  85. Mol Vis. 2007 Aug 27;13:1451-7 [PMID: 17893646]
  86. Cell. 2008 Feb 22;132(4):661-80 [PMID: 18295582]
  87. Genome Biol. 2016 Aug 17;17(1):173 [PMID: 27534536]
  88. Genome Biol. 2018 Apr 5;19(1):47 [PMID: 29622030]
  89. Methods Mol Biol. 2011;696:291-303 [PMID: 21063955]
  90. Genes Dev. 1991 Jan;5(1):83-93 [PMID: 1989908]
  91. Cell Stem Cell. 2017 Jan 5;20(1):102-111 [PMID: 27989768]
  92. Nat Rev Immunol. 2018 Jan;18(1):35-45 [PMID: 28787399]
  93. Cell Stem Cell. 2017 Jun 1;20(6):874-890.e7 [PMID: 28343983]
  94. Science. 2009 Jan 16;323(5912):388-93 [PMID: 19150847]
  95. Nucleic Acids Res. 2015 Jan;43(Database issue):D76-81 [PMID: 25262351]
  96. Stem Cells. 2006 Aug;24(8):1879-91 [PMID: 16675596]
  97. Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69 [PMID: 26860365]
  98. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  99. Nature. 2005 Jun 16;435(7044):944-7 [PMID: 15959514]
  100. Oncogene. 2015 Jan 22;34(4):436-44 [PMID: 24469049]
  101. Development. 2015 Sep 15;142(18):3151-65 [PMID: 26293300]
  102. Development. 1997 Oct;124(20):3929-41 [PMID: 9374391]
  103. J Neurosci. 2009 Dec 16;29(50):15630-41 [PMID: 20016077]
  104. Cell. 2015 May 21;161(5):1187-1201 [PMID: 26000487]
  105. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  106. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. 81770188/National Natural Science Foundation of China
  2. 31722027/National Natural Science Foundation of China
  3. 31701290/National Natural Science Foundation of China
  4. 2016XZZX002-04/Fundamental Research Funds for the Central Universities
  5. 2017YFA0103401/National Key Program on Stem Cell and Translational Research
  6. 2015CB964900/973 Program

MeSH Term

Cell Differentiation
Cells, Cultured
Embryoid Bodies
High-Throughput Nucleotide Sequencing
Humans
Pluripotent Stem Cells
Sequence Analysis, RNA
Single-Cell Analysis