Modulating ADME Properties by Fluorination: MK2 Inhibitors with Improved Oral Exposure.

Juraj Velcicky, Achim Schlapbach, Richard Heng, Laszlo Revesz, Daniel Pflieger, Ernst Blum, Stuart Hawtin, Christine Huppertz, Roland Feifel, Rene Hersperger
Author Information
  1. Juraj Velcicky: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  2. Achim Schlapbach: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  3. Richard Heng: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  4. Laszlo Revesz: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  5. Daniel Pflieger: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  6. Ernst Blum: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  7. Stuart Hawtin: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  8. Christine Huppertz: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  9. Roland Feifel: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
  10. Rene Hersperger: Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.

Abstract

MAP-activated protein kinase 2 (MK2) plays an important role in the regulation of innate immune response as well as in cell survival upon DNA damage. Despite its potential for the treatment of inflammation and cancer, to date no MK2 low molecular weight inhibitors have reached the clinic, mainly due to inadequate absorption, distribution, metabolism, and excretion (ADME) properties. We describe here an approach based on specifically placed fluorine within a recently described pyrrole-based MK2 inhibitor scaffold for manipulation of its physicochemical and ADME properties. While preserving target potency, the novel fluoro-derivatives showed greatly improved permeability as well as enhanced solubility and reduced clearance leading to significantly increased oral exposure.

References

Curr Top Med Chem. 2013;13(9):1015-35 [PMID: 23651481]
Bioorg Med Chem Lett. 2010 Feb 1;20(3):1293-7 [PMID: 20060294]
Mol Pharmacol. 2014 Feb;85(2):345-56 [PMID: 24296859]
Bioorg Med Chem Lett. 2010 Aug 1;20(15):4719-23 [PMID: 20591669]
J Med Chem. 2005 Mar 24;48(6):1729-44 [PMID: 15771420]
J Org Chem. 2017 Dec 1;82(23 ):11961-11980 [PMID: 28945374]
Biochim Biophys Acta. 2014 Nov;1843(11):2563-2582 [PMID: 24892271]
J Med Chem. 2008 Aug 28;51(16):4858-61 [PMID: 18665579]
EMBO J. 2003 Nov 3;22(21):5793-805 [PMID: 14592977]
Crit Rev Eukaryot Gene Expr. 2010;20(2):87-103 [PMID: 21133840]
Pharmacol Rep. 2017 Aug;69(4):746-756 [PMID: 28582691]
Future Med Chem. 2009 Oct;1(7):1243-57 [PMID: 21426101]
J Med Chem. 2008 Nov 13;51(21):6631-4 [PMID: 18842034]
J Med Chem. 2006 Apr 20;49(8):2600-10 [PMID: 16610803]
Biol Chem. 2013 Oct;394(10 ):1301-15 [PMID: 23832958]
J Med Chem. 2016 Apr 28;59(8):3609-34 [PMID: 26502061]
Bioorg Med Chem Lett. 2008 Dec 1;18(23):6142-6 [PMID: 18945615]
Bioorg Med Chem Lett. 2006 Mar 15;16(6):1518-22 [PMID: 16386901]
Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
Cell Rep. 2013 Nov 27;5(4):868-77 [PMID: 24239348]
J Pharm Sci. 2017 Apr;106(4):921-929 [PMID: 27986598]
J Med Chem. 2018 Feb 5;:null [PMID: 29400967]
J Med Chem. 2011 Apr 28;54(8):2529-91 [PMID: 21413808]
Cell. 2015 Jul 2;162(1):146-59 [PMID: 26140595]
Drug Healthc Patient Saf. 2013;5:79-99 [PMID: 23569399]
Bioorg Med Chem Lett. 2010 Aug 1;20(15):4715-8 [PMID: 20594847]

Word Cloud

Similar Articles

Cited By